高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种仿人机械臂体感控制系统及控制方法
本发明公开了一种仿人机械臂体感控制系统及控制方法,引入 臂型角来定义手臂肩关节、肘关节和腕关节形成的平面与参考平面的 夹角大小。通过手掌和肩关节的位置差来确定手臂末端的位置,手臂 末端的姿态通过手掌、拇指和手掌末端形成的平面与肩关节坐标系的 相对姿态来确定。得到人体手臂的臂型角以及手臂末端的位置和姿态, 就可以由控制系统计算出机械臂的七个自由度的角度,从而实现机械 臂的精确控制。本发明与现有技术相比,具有以下优点:基于手臂臂 型角的仿人机械臂体感的控制方法,将人体手臂的位置和姿态进行了 完整的定义,
华中科技大学 2021-04-14
二氧化碳 间接式 感温自启动灭火装置
装置构成及原理由装有灭火剂的容器、容器阀、充压探火管、释放管、喷嘴、压力表以及探火管专用接头等组成。间接式二氧化碳感温自启动灭火装置的探火管通过容器阀连接到灭火剂容器上,进行火源检测,遇火时探火管爆破,利用探火管中的压力下降,启动容器阀,通过释放管至喷嘴把灭火剂释放。释放方式:间接式型号规格:WZ-Q/T-JE40SF灭火剂充装量:40kg(0-5%)20℃贮存压力:5.17MPa最大工作压力:15MPa单位体积所需灭火剂最小量:1.5kg/m3探火管最大长度:25m释放管最大长度:12m探测启动温度:150℃±10℃工作温度范围:0~50℃
青岛中阳消防科技股份有限公司 2021-09-10
鉴定苹果抗、感炭疽菌叶枯病的SSR分子标记及其应用
本发明提出用于鉴定苹果抗炭疽菌叶枯病的SSR分子标记,所述分子标记分别为S0607039;S0607001;S0506206;S0506078,S0506001S0405195,S0405127,S0304673,S0304011。本发明还提出扩增用于鉴定苹果抗炭疽菌叶枯病的SSR分子标记的引物。本发明通过自行设计的SSR标记对苹果抗炭疽菌叶枯病基因进行了分子标记,确定所在的染色体位置及遗传距离,构建了紧密连锁的遗传图谱。距离抗性基因最近的分子标记能准确的鉴定出苹果对炭疽菌叶枯病的抗性,为苹果生产实践及抗性育种提供有效工具,并为下一步抗性基因的克隆及功能验证奠定了良好的基础。
青岛农业大学 2021-04-13
感温电缆JTW-LD-SF300/85 新突破 使用长度可达1000米
一、 概述JTW-LD-SF300/85 缆式线型感温火灾探测器(以下简称探测器)是一种新型的超长距离使用的不可  重复使用的监测环境温度变化的消防专利产品,主要由微电脑处理器、感温电缆、终端盒组成。探测器  具有良好的环境适应性,能够近距离或贴近保护,在各种潮湿、污染、粉尘的消防探测场所能够高可靠  地工作,所以被广泛地应用在仓库、货场、电缆隧道、车辆隧道、油气输送管道、变压器、皮带输送机  及机车、配电盘等消防探测场所。组成探测器具有定温报警功能,特别适用于电缆隧道、电缆桥架、电  缆井内的动力电缆及控制电缆的火警早期预报,可在电厂、钢厂、化工厂等场合使用。 二、 工作原理及特点探测器的感温电缆为温度敏感元件,由三根分别挤塑热敏绝缘材料的导线绞合而成,能够对沿着其安装长度范围内任意一点的温度变化进行探测,再经过单片机微控制器模糊数学的计算方法做  出火警判断。  其主要特点简述如下:  1.感温电缆结构稳定,抗干扰性及抗拉性能强。  2.具有开路、短路两种故障报警。  3.微电脑处理器和终端盒外壳采用阻燃材料,抗腐蚀、抗老化。  4.带手动火警和故障模拟功能。  5.探测器抗干扰能力强,采用隔离检测以及软件抗干扰技术,可应用于强电磁场干扰的场所。  6.通过输入模块的无极性二总线技术和所有火灾报警控制器通讯。  7.接入专用显示装置具有报警定位功能。 
青岛中阳消防科技股份有限公司 2021-09-10
宽禁带半导体碳化硅电力电子器件技术
宽禁带半导体碳化硅(SiC)材料是第三代半导体的典型代表之一,具有宽带隙、高饱和电子漂移速度、高临界击穿电场、高热导率等突出优点,能满足下一代电力电子装备对功率器件更大功率、更小体积和更恶劣条件下工作的要求,正逐步应用于混合动力车辆、电动汽车、太阳能发电、列车牵引设备、高压直流输电设备以及舰艇、飞机等军事设备的功率电子系统领域。与传统硅功率器件相比,目前已实用化的SiC功率模块可降低功耗50%以上,从而减少甚至取消冷却系统,大幅度降低系统体积和重量,因此SiC功率器件也被誉为带动“新能源革命”的“绿色能源”器件。 本团队在SiC功率器件击穿机理、SiC功率器件结终端技术、SiC新型器件结构、器件理论研究和器件研制等方面具有丰富经验,能够提供完整的大功率SiC电力电子器件的设计与研制方案。目前基于国内工艺平台制作出1600V/2A-2500V/1A的SiC DMOS晶体管(图1,有源区面积0.9mm2);4000V/30A的SiC PiN二极管(图2);击穿电压>5000V的SiC JBS二极管(图3)。 a b c 图1 1.6-2.5kV SiC DMOS器件:(a)晶圆照片(b)正向IV测试曲线(c)反向击穿电压测试曲线 a b c 图2 4kV/30A SiC PiN器件:(a)晶圆照片(b)正向导通测试曲线(c)反向击穿电压测试曲线 a b c 图3 5kV SiC JBS器件:(a)显微照片(b)正向导通测试曲线(c)反向击穿电压测试曲线
电子科技大学 2021-04-10
一种基于全息波导的头戴式显示器件
本发明公开了一种基于全息波导的头戴式显示器件,该器件包括入耦合光栅(1)、左视场偏折光栅(2)、右视场偏折光栅(3)、出耦合光栅(4)、矩形波导(5);入耦合光栅(1)、左视场偏折光栅(2)、右视场偏折光栅(3)、出耦合光栅(4)、贴附于矩形波导(5)的上表面或下表面;入耦合光栅(1)、左视场偏折光栅(2)、右视场偏折光栅(3)、出耦合光栅(4)、矩形波导(5)贴于上表面或下表面由出入瞳光线设计方向决定。本发明利用光瞳重塑方式解决了传统二维扩瞳方式产生的大视场角情况下的视场分离。
东南大学 2021-04-11
高温压电振动能量回收器件和高温驱动器
传统PZT压电陶瓷应用广泛,但在居里温度较低,环境温度较高时,PZT陶瓷样品极易退极化。随着压电材料的应用范围的进一步拓展,一些极端条件对压电陶瓷的应用提出了新的挑战。北京大学工学院实验室利用高居里点的钪酸铋-钛酸铅压电陶瓷制备了基于d31模式和d33模式的应用于高温环境中的压电振动能量回收器,器件可以稳定地工作在150℃以上的高温环境中。高温下由于电畴被活化,器件的压电系数和相应的输出功率比室温时提高一倍以上。 与压电能量回收器不同的是,压电驱动器是一种利用压电效应,将电能转化为机械能实现纳米级驱动的器件,压电驱动器利用压电材料的准静态逆压电效应实现10微米至100微米的微小位移;同时,还可以利用压电陶瓷的高温谐振动效应制备高温压电马达。
北京大学 2021-02-01
宽禁带半导体碳化硅电力电子器件技术
本团队在SiC功率器件击穿机理、SiC功率器件结终端技术、SiC新型器件结构、器件理论研究和器件研制等方面具有丰富经验,能够提供完整的大功率SiC电力电子器件的设计与研制方案。
电子科技大学 2021-04-10
磁流体热磁对流在电子器件散热中的应用
项目概况 针对小型化、集成化、高频率和高运算速度的电子器件,应用磁流体的热磁对流效应,把磁流体作为新一代高效传热冷却技术用于高密度高功率电子器件设备中。 主要特点 1. 选择合适的外加磁场和屏蔽技术。 2.温度区内磁场梯度条件和粒子浓度的准确控制 3.磁流体微型热管散热过程的磁场的准确定位。 技术指标     建立适合电子器件密集环境下适用磁流体散热技术及相应的磁场条件和屏蔽技术,提高了磁流体在磁场、热场和重力场协同作用下的流动传热效果。促进节能环保技术的发展,达到节能减排的绿色材料应用。市场前景 目前该项目已通过现场的工业化证明,散热效果好,能达到电子器件冷却要求,满足工业生产的需求,在生产过程中无污染,无三废排放。该项目可应用于高密度、高功率电子器件密集环境下的散热设备中,具有较好的经济效益和社会效益。
南京工程学院 2021-04-11
基于超陡摆幅器件的极低功耗物联网芯片
随着集成电路的发展,功耗问题越来越成为制约的瓶颈问题。特别是在即将到来的万物互联智能时代,物联网、生物医疗、可穿戴设备和人工智能等新兴领域更加追求极低功耗,尤其是极低静态功耗。面向未来庞大的物联网节点应用的需求,极低功耗器件及其电路芯片受到越来越多的关注。受玻尔兹曼限制,传统晶体管的亚阈摆幅存在理论极限,这一限制是阻碍器件功耗降低的关键因素,基于传统CMOS晶体管的集成电路已经无法满足物联网节点等对极低功耗的需求。 本项目基于标准CMOS工艺研制新型超陡摆幅隧穿器件,并进一步研发具有极低功耗的物联网节点芯片。新型超陡摆幅隧穿器件采用有别于传统晶体管的量子带带隧穿机制,可突破亚阈摆幅极限,同时获得比传统晶体管低2个量级以上的关态电流性能,具备极其优越的低静态功耗性能。通过超陡亚阈摆幅器件及电路技术的研究和突破,可促进我国物联网芯片产业的发展,显著提高物联网节点的工作时间,具有重要的应用价值。
北京大学 2021-02-01
首页 上一页 1 2
  • ...
  • 16 17 18
  • ...
  • 26 27 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1