高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
防静电尘拖液
防静电尘拖液是一种含有光亮剂多种化学混合剂配制而成的静电吸附液,能使打蜡的地面保持清洁并能保护地面的光泽。使用时,先将该剂喷洒在地拖上并让其浸透。这种处理过的地拖能增加其对尘埃或污物的吸附力,极易将地板上的灰尘沾到地拖上,而当摇动地拖时,灰尘有极易与布分离。适用于各种光滑地面。
武汉工程大学 2021-04-11
无尘环保教学板
产品详细介绍
上海域声信息科技有限公司 2021-08-23
无尘书写专用板擦
产品详细介绍脏后可清洗,反复使用
重庆万代教育科技有限公司 2021-08-23
纳米型无尘教学
无尘班班通之笔触型解决方案 笔触型教学板是集传统教学和电子教学相结合的高科技产品,具有良好的兼容性和实用性。板面采用防静电纳米涂层、呈乳白色,反光度低、可有效预防近视。与计算机和投影机连接,配合电子白板软件使用,可实现人机互动,从而创造一个生动的教学环境,有利于培养学生的综合素质和能力。其耐热、耐磨、可擦洗的特性,完全满足传统教学的需求。 产品配置:纳米教学板+环保干擦书写套装+投影机+互动模组
中国(深圳)教育企业股份有限公司 2021-02-01
杀菌剂-肟菌酯创新合成技术
项目简介: 肟菌酯为含氟杀菌剂,具有高效、广谱、保护、治疗、渗透内吸 活性、2 冲刷、持效期长等特性。对作物安全,因其在土壤、水中可 快速降解,故对环境安全。是目前在农药界备受关注的新型杀菌剂。 项目特色: 1)甲基溴化反应:文献最高达到 78%,二溴化的副产物很难控 制。我们通过自主创新的催化剂增加反应选择性,提高反应效率,使 2-溴甲基-α-甲氧亚胺基苯乙酸甲酯 B 收率达到 90%,含量达到 96%。 2)间三氟甲基苯乙酮肟的合成:间三氟甲基苯基重氮硫酸盐与 乙醛肟生成间三氟甲基苯乙酮肟,收率达到 85%左右,达到文献水平。 3)肟菌酯产品的合成:从 2-溴甲基-α-甲氧亚胺基苯乙酸甲酯与 间三氟甲基苯乙酮肟缩合得到肟菌酯,含量达 96%,收率达 78%。 (文献是 56-70%)。 市场应用前景: 肟菌酯目前市场价格在 60-68 万/吨,以采购甲基-α-甲氧亚胺基 苯乙酸甲酯目前一吨肟菌酯原药成本价在 26-30 万/吨,如果自己合成上述原料,每吨原料成本还可以降低 5 万元左右,肟菌酯项目具有很 好的产业化前景。在厂房和生产公用平台具备条件下,投资 500 万元, 可以达到年产 100 吨规模。
南开大学 2021-04-13
杀菌剂-肟菌酯创新合成技术
项目简介: 肟菌酯为含氟杀菌剂,具有高效、广谱、保护、治疗、渗透内吸 活性、2 冲刷、持效期长等特性。对作物安全,因其在土壤、水中可 快速降解,故对环境安全。是目前在农药界备受关注的新型杀菌剂。 项目特色: 1)甲基溴化反应:文献最高达到 78%,二溴化的副产物很难控 制。我们通过自主创新的催化剂增加反应选择性,提高反应效率,使 2-溴甲基-α-甲氧亚胺基苯乙酸甲酯 B 收率达到 90%,含量达到 96%。 2)间三氟甲基苯乙酮肟的合成:间三氟甲基苯基重氮硫酸盐与 乙醛肟生成间三氟甲基苯乙酮肟,收率达到 85%左右,达到文献水平。 3)肟菌酯产品的合成:从 2-溴甲基-α-甲氧亚胺基苯乙酸甲酯与 间三氟甲基苯乙酮肟缩合得到肟菌酯,含量达 96%,收率达 78%。 (文献是 56-70%)。 市场应用前景: 肟菌酯目前市场价格在 60-68 万/吨,以采购甲基-α-甲氧亚胺基 苯乙酸甲酯目前一吨肟菌酯原药成本价在 26-30 万/吨,如果自己合成上述原料,每吨原料成本还可以降低 5 万元左右,肟菌酯项目具有很 好的产业化前景。在厂房和生产公用平台具备条件下,投资 500 万元, 可以达到年产 100 吨规模。
南开大学 2021-04-13
新型膨胀阻燃剂合成及其应用研究
本项目完成了新型单组分磷氮膨胀型阻燃剂的合成方法及合成工艺的研究,进一步获得了多种具有良好耐热性的新型单组分磷氮膨胀型阻燃剂。进一步研究开发出具有火灾危险性较低、环境友好、力学性能优异的分磷氮膨胀阻燃复合材料,本质上阐明了单组分磷氮膨胀阻燃PS的阻燃机理。通过小尺寸燃烧实验和大尺寸实体火灾实验,获得了阻燃符合材料燃烧特性参数,并建立通过小尺寸燃烧实验预测阻燃材料在真实火灾中燃烧行为的科学方法,完成对基于杯芳烃模块的单组分磷氮膨胀阻燃PS复合材料的火灾危险性的全面评价。同时,基于本项目的成果,发表了SCI 13篇,申请国家发明专利4项。项目实施过程中培养专业硕士研究生10名。
中国人民警察大学 2021-05-03
植物生产调节剂植物龙的合成工艺
植物龙亦称植物生长调节物质,指从外部施加给植物,只要很微量就能调节、改变植物生长发育的化学试剂。除了植物激素从外部施加给植物作为生长调节剂外,更多的植物生长调节剂,是植物体内并不存在的人工合成有机物,主要有,一是植物激素类似物,例如与生长素有类似生理效能的吲哚丁酸、萘乙酸、2,4-D 等,与细胞分裂素有类似生理效能的激动素和6-苄基氨基嘌呤等。二是生长延缓剂,有延缓生长作用,降低茎的伸长而不完全停止茎端分生组织的细胞分裂和侧芽的生长,其作用能被赤霉素恢复,例如矮壮索(CCC)、丁酰肼(B9)、调节安等。三是生长抑制剂,也有延缓生长的效果,但与生长延缓剂不同,它们主要干扰顶端的细胞分裂,使茎伸长停顿和顶端优势的破坏,其作用不能被赤霉素恢复,例如青鲜素(MH)等。另外,由于除草剂大都是人工合成的生长调节剂,因此,有人把除草剂也作为一大类生长调节剂。植物生长调节剂,在农业生产上,可分别用在促进或抑制植物的营养生长,促进或抑制种子、块根、块茎的发芽,防止或促进器官的脱落,促进生根、座果和果实发育,控制性别分化、诱导和调节开花,催熟或延迟成熟和衰老,以及杀死田间杂草等方面。植物龙是一种用于蔬菜的植物生长调节剂,可有效地使蔬菜增产。主要用于阔叶蔬菜(如白菜等)。采用简单催化剂,使产品成本比市场上同类产品降低30%以上。应用在蔬菜种植。植物龙是一种在日本得到广泛推广的植物生长调节剂。使用范围广,用量大。我国正大面积推广。适合中小型企业投资,设备投资额10 万以下。按每年12 吨的产量计算,每吨成本为8 万/吨,售价15 万/吨,利润为80万余元。 合作方式包括技术转让和实施交钥匙工程。
北京化工大学 2021-02-01
气相合成γ-丁内酯技术及催化剂
γ-丁内酯是一种用途极其广泛的重要化工原料,尤其近几年国内外需求量呈上升趋势。现阶段合成γ-丁内酯主要有1,4-丁二醇脱氢法和顺酐加氢法。顺酐加氢法虽然原料成本较低,但由于原料对反应器有严重的腐蚀,并且氢气耗量大,产物损失较多,生产效率低,所以已经逐渐被生产厂家淘汰。1,4-丁二醇脱氢法,为目前较为先进的生产方法,但生产中仍需引入氢气,所以氢源问题限制了一部分企业的生产,并造成设备造价提高。我组经多年的研究开发,成功研制出了高效专用工业催化剂,即在非临氢状态下合成γ-丁内酯,在高空速、较低的反应温
南开大学 2021-04-14
无催化剂熔融缩聚合成聚酯
研究团队发展并突破了Carothers建立的聚酯合成理论,提出了一种无催化剂缩聚的新机理,采用了一类能够形成五元环或者六元环酸酐的二元羧酸作为单体。 一、项目分类 关键核心技术突破 二、技术分析 聚酯是仅次于聚烯烃的第二大类人工合成高分子材料,被广泛应用于纤维、瓶材、薄膜等领域,与人们的生产生活密切相关。大多数商品化聚酯都是采用二元羧酸和二元醇在金属化合物的催化下通过熔融缩聚合成的。锑系催化剂是目前综合性能最好,应用最为广泛的催化剂,残留在聚酯中的金属锑对人类健康和环境有潜在危害,亟待开发新型绿色聚酯合成新方法,消除聚酯中残留催化剂的危害。 聚酯的工业生产一般分为两步反应:(1)二元羧酸和二元醇通过酯化反应合成低分子量羟基封端齐聚物;(2)酯交换反应脱除二元醇获得高分子量聚酯。其中第一步酯化反应不需要外加催化剂,通过二元羧酸单体自身的羧基自催化即可进行,而所谓的聚酯催化剂实质上是第二步反应的酯交换催化剂。只通过第一步酯化反应就有效提升聚酯分子量,避免第二步酯交换反应的进行,是无催化剂熔融缩聚合成高分子量聚酯唯一有效途径。早在高分子学科创立之初的上世纪20年代末,Carothers就研究了二元羧酸与二元醇可在羧酸单体自催化下熔融酯化缩聚,以期得到聚酯材料,然而产物分子量仅有2-5 kDa,性能太差而无法应用。酯化反应的低平衡常数和高熔体黏度下排除副产物水的困难,被普遍认为是导致自催化方法无法获得高分子量聚酯的原因。1941年,英国化学家Whinfield和Dickson受Carothers研究的启发创造性地提出了酯交换策略,通过酯交换反应脱除过量的二元醇合成了分子量高、力学性能优异的聚对苯二甲酸乙二醇酯(PET),并由英国ICI公司在1946年实现工业化生产。目前几乎所有的商品化聚酯都是通过酯交换路线合成的,但是为了克服酯交换反应的能垒,催化剂的使用不可避免。Flory在1953年出版的《Princeples in Polymer Chemistry》上对此做了总结,认为自催化酯化缩聚合成高分子量聚酯是不可能实现的。 研究团队通过对自催化酯化缩聚机理的深入研究,得出自催化方法无法获得高分子量聚酯的原因仅仅在于反应过程中的官能团比例失衡,而非酯化反应的低平衡常数及副产物难以排出。研究团队发展并突破了Carothers建立的聚酯合成理论,提出了一种无催化剂缩聚的新机理,采用了一类能够形成五元环或者六元环酸酐的二元羧酸作为单体。过量的此类二元酸与伯二元醇酯化形成羧基封端的预聚物后,通过三步串联的基元反应:质子转移、酸酐形成和再次酯化反应,使得体系中的醇酸官能团比例不断趋近于等摩尔比,从而在不需要外加催化剂的条件下获得了高分子量的聚酯。该方法中聚酯产物分子量增长呈现出独特的“加速”模式,从而在与传统工艺相近的时间内,通过熔融缩聚获得了一系列的高分子量无催化剂聚酯,包括聚丁二酸丁二醇酯(PBS)、聚丁二酸乙二醇酯(PES)、聚(丁二酸丁二醇酯-共-己二酸丁二醇酯)(PBSA)和聚(丁二酸乙二醇酯-共-对苯二甲酸乙二醇酯)(PEST)等。研究团队通过进一步深入研究聚合机理,优化聚合工艺,解决了无催化剂熔融缩聚合成聚酯的单体普适性问题,实现了PET、聚呋喃二甲酸乙二醇酯(PEF)等芳香族聚酯的无催化剂合成。 本成果解决了聚酯工业的百年难题,属于国际首创,并拥有完全的知识产权,具有巨大的应用潜力。
浙江大学 2022-07-22
首页 上一页 1 2 3 4 5 6
  • ...
  • 150 151 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1