高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
SC-4929润滑脂滴点测定仪
仪器概述 本仪器是根据中华人民共和国标准GB/T 4929《润滑脂滴点测定法》规定的要求设计制造的,适用于按GB/T4929标准规定的试验方法测定润滑脂的滴点。 技能参数 1、工作电源: AC220V10%,50Hz。 2、油浴:容积为600毫升烧杯。 3、脂杯:镀铬黄铜制成,内径为9.92mm,滴油孔为2.8mm,杯高为12mm。 4、试管:带边耐热硅酸硼玻璃试管,内径为11.1至12.7mm,离底部19mm外的圆周上有用来支撑脂杯的三个凹        槽。 5、温度计:测温范围为-5~300℃,分度值为1℃,浸入深度为76毫米、全长为390mm。 6、加热器:管状,功率800W。 7、搅拌电机:转速为60转/分。 8、环境温度: -10~+40℃; 9、相对湿度: 85%; 10、整机功耗:不大于900W。 性能特点 1、采用耐高温烧杯、加热器、电动搅拌器组成油浴,加热功率连续可调,浴内温度均匀,满足试验的要求。 2、仪器设计为台式结构,小巧美观,使用方便,配套齐全,用户购买后即可进行试验。 网址链接 http://www.csscyq.com/proshow.asp?id=789
长沙思辰仪器科技有限公司 2021-12-21
高级吞咽机制模型
XM-TY高级吞咽机制模型   一、功能特点: ■ XM-TY高级吞咽机制模型为半侧成人头颈部,采用高分子材料制成,仿真度高。 ■ 演示吞咽机制原理。 ■ 演示误咽产生的原因。 ■ 颈部角度与误咽的相互关系。 ■ 误咽发生时的紧急救治处理方法。 ■ 正确进食姿势及其体位和病床角度的相互关系。 ■ 口腔护理时的吞咽练习。 ■ 观察鼻饲管在不同角度时的状态。 ■ 学习如何经鼻插胃管和间断性经胃管管饲。 ■ 学习口腔内部吸收原理。 ■ 配有可调节的模拟病床,病床以及头颈部均有角度指示针,可观察头颈角度的变化与病床的角度关系。   二、标准配置: ■ 吞咽与呼吸机制演示模型:1台 ■ 模拟病床:1张 ■ 说明书:1册 ■ 保修卡合格证:1张
上海欣曼科教设备有限公司 2021-08-23
抗糖尿病/抗AD钒配合物药物开发
研发背景:糖尿病和老年痴呆症(Alzheimer’s disease, 简称 AD)是目前影响人类健康和社会发展的重大疾病。糖尿病和AD之间存在密切联系,因此AD也被某些研究者称为三型糖尿病。目前AD无药可治;而糖尿病已经有了很多的“血糖控制”药物。然而,糖尿病的真正危害不是高血糖,而是高血糖相关的糖尿病并发症。最新的研究表明,目前方式的严格血糖控制并不能给大多数病人带来降低糖尿病并发症的收益;相反,此类血糖控制可能带来低血糖和死亡率升高的风险。因此,美国医师协会(ACP)建议:大多数 2 型糖尿病患者的控制目标应该是糖化血红蛋白水平在7~8%之间(即平均血糖在8~11mM 范围)。而这一理想控糖并降低糖尿病并发症的目标可由钒配合物药物实现。 抗糖尿病钒配合物曾经在2009年前在美国进入二期临床研究。但由于美国金融危机影响和当时测试的钒配合物BEOV的潜在肾脏副作用,BEOV的开发在2009年终止。本研究室从2009年通过长期研究,成功解析了钒配合物药理作用和毒理作用的分子机制,通过理性药物设计,得到了VOdmada等系列新型具有自主知识产权的配合物,有效解决了以前钒配合物存在的问题。在多种二型糖尿病动物上具有良好的控糖和预防并发症的疗效,并且明显延长了动物的寿命。而在APPS1动物模型上,则能够有效抑制淀粉样蛋白对脑组织的损伤,成功维持动物的记忆和认知水平。 前景预测:VOdmada有望开发成功为I类口服抗糖尿病(而非仅仅控糖)新药,以及I类口服抗AD新药。开发策略可根据市场及FDA政策择优选择。 成果特点:VOdmada钒配合物抗糖尿病药物和已有的口服控糖药物相比。现有药物均以胰岛素及其信号通路为靶点,而钒配合物的抗糖尿病作用则以调节细胞应激响应为起点,发挥多种作用,主要包括:激活Hsp60-PPARγ-AMPK信号转导,发挥胰岛素增敏和促进脑、肌肉、脂肪、肝脏等组织的葡萄糖/脂肪代谢的作用。在此方面,钒配合物的作用相当于现有的药物二甲双胍和吡格列酮联用;调节未折叠蛋白响应,促进Grp78表达,进而发挥保护胰岛细胞和促进胰岛细 胞恢复的作用;调节线粒体应激,促进Grp75表达,进而发挥保护脑神经细胞作用;减肥和寿命延长作用(药理分子机制有待阐释)。
北京大学 2021-02-01
抗噪声通话系统
一. 应用范围 凡是噪声环境恶略、且需要通话的场合,都适用抗噪声通话系统。二.  主要功能和技术指标噪声环境下可实现多点控制双向通话,支持有线、无线两种工作方式,在噪声环境高达120dB,能确保通话清晰、设备可靠。
北京理工大学 2021-04-13
抗噪声通话系统
Ø  成果简介:凡是噪声环境恶略、且需要通话的场合,都适用抗噪声通话系统。达到国外抗噪声通话产品的性能指标。Ø  项目来源:自行开发Ø  技术领域:先进制造Ø  应用范围:为航天医学工程研究所研制的各种类型抗噪声通话系统全部用于航天员训练工作,解决噪声对人体的侵害,提高噪声环境下的工作效率。适合推广应用。Ø  现状特点:噪声环境下可实现多点控制双
北京理工大学 2021-04-14
中抗动碘
商品名称:中抗动碘 规格:5% 50ml/瓶 类型:消毒剂
德州京信药业有限公司 2021-09-10
植物免疫团队康振生/张新梅组揭示小麦感病基因负调控小麦抗条锈病新机制
2022年3月,植物免疫团队康振生/张新梅组在小麦与条锈菌互作方面取得新进展,研究揭示了小麦感病基因负调控小麦抗条锈病的新机制。研究成果以“TaBln1negativelyregulateswheatresistancetostriperustbyreducingCa2+influx”为题在《PlantPhysiology》在线发表。植保学院2021级博士研究生郭双元为第一作者,生命学院张新梅副教授为通讯作者。
西北农林科技大学 2022-07-11
一种复合铝基润滑脂及其制备方法
简介:本发明提供一种复合铝基润滑脂及其制备方法,属于润滑脂制备技术领域。该润滑脂的组成及重量百分比为:C12-C18饱和直链脂肪酸5-9%;C12-C18饱和羟基脂肪酸0-4%;芳香酸0.25-3%;偏铝酸钠0.5-1.5%;基础油83-92%。制备方法为:在常压酯化釜中加入的基础油,搅拌升温至60-80℃,分别加入芳香酸、C12-C18直链饱和脂肪酸、C12-C18饱和羟基脂肪酸,恒温搅拌至完全溶解,升温至100-120℃后,加入偏铝酸钠低温皂化1-4小时,再升温至160-180℃中温皂化1-3小时,然后,继续升温至200-220℃高温炼制0.5-2小时后,加入剩余的基础油搅拌、冷却,并研磨、脱气处理后即得复合铝基润滑脂。本发明制备的润滑脂具有高滴点和良好的机械安定性以及优异的防锈性能。
安徽工业大学 2021-04-13
新型高强复合金属材料用聚脂热熔胶
双金属复合板(带)可在不降低使用效果(装饰性能、防腐性能、机械强度等)的前提下节约资源、降低成本。一般要求复合用热熔胶具有较高的粘结强度、耐高温、耐酸碱及其它化学试剂腐蚀的能力。聚酯热熔胶对金属及高分子聚合物的粘结效果较好,可通过调整原料中酸和醇的成分与配比来满足不同的实际需求,但其是线性饱和聚酯材料,缺少交联中心,软化点低、耐酸碱性能差。 改性聚酯热溶胶其组分包括聚脂热熔胶和氯乙烯醋酸乙烯酯,其中还添加了增塑剂、热稳定剂及辅助填料。通过氯乙烯醋酸乙烯酯自由基的聚合反应,提高胶黏剂的
河海大学 2021-04-14
重组改造枯草芽孢杆菌高产脂肽集成技术
1.痛点问题 表面活性素是一种枯草芽孢杆菌脂肽,分子结构含7个氨基酸环肽及13-16个碳链长度的脂肪酸,作为脂肽家族生物表面活性剂的代表性分子,具有优异的表面/界面活性、稳定性及抑菌、杀虫等性能。因此,其在石油开采、工农业、医药、日化等领域展现出了非常广阔的应用前景。 但发酵产率低严重制约了表面活性素的工业化生产和应用。研究表明,野生菌株的产量通常为1g/L以下。培养基和培养条件优化后,产量提高也很有限。菌株的基因工程改造方面也比较困难。表面活性素(脂肽)合成机制为特殊的非核糖体肽合成机制,基因簇很大,长度达到26Kb以上。因此很难实现异源表达,只能进行基因组原位突变改造。其分子结构中既包含氨基酸、也包括脂肪酸,因此代谢途径也很复杂。此外,发酵培养过程中,严重的起泡和泡沫溢出问题也制约了工业化的进程。 2.解决方案 化工系于慧敏教授团队从南海底泥等特殊环境中筛选获得了产表面活性素野生枯草芽孢杆菌,进一步采用原位编辑超强启动子工程、特点氨基酸和脂肪酸代谢工程和营养细胞-芽孢调控综合策略,成功构建高产表面活性素的无休眠枯草芽孢杆菌超级细胞工厂,并进一步打通了高产表面活性素新工艺,获得了表面活性素液体和粉末产品。 3.合作需求 本项目寻求有志于在石油开采、工农业、日化洗涤等不同应用领域进行脂肽(表面活性素)新产品开发的企业开展合作,尤其是在上述不同领域具有孵化资源或资金,在工程化、产品化所需的场地、实验条件等方面具有生产和销售优势或经验的企业。也寻求对不同应用场景具有共同开发兴趣的企业开展技术合作。最后,也希望与一些高科技园区进行对接,推动产品生产线建设。
清华大学 2022-09-23
首页 上一页 1 2 3 4 5 6
  • ...
  • 60 61 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1