高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
新型高效可见光响应型半导体材料
能源短缺与环境污染是影响当前社会发展最重要的问题,亟需解决。新型光催化技术由于能够利用太阳光分解水制氢气和降解环境污染物,使其成为解决当前的能源危机和环境污染等问题最有前途的技术之一,备受瞩目。而当前光催化领域最重要的问题就是去设计、寻找高效稳定的可见光响应型半导体材料。在此,我们主要通过改性前驱体和设计新的焙烧策略成功得到了具备多孔结构、低碳含量、纳米片形貌的 g-C3N4 光催化剂,相比原始的 g-C3N4 ,光催化性能提升了 8 倍;通过介孔化设计和负载贵金属光催化剂,成功解决了 Pb3Nb2O8 光催化剂比表面积小、光生电子 - 空穴易复合的缺点,使光催化活性显著提升了 62 倍。通过调查浸渍提拉、磁控溅射、电泳沉积等手段,成果获得了 Bi2MoO6 和 Pb3Nb4O13 光电极材料,充分探索了其光电化学性能,并且通过负载 Co-P 显著提升了其光电转化效率,为分解水制氢与太阳能电池领域提供了一种可选择性的材料;过渡金属离子掺杂与介孔材料有效结合,有效地探索了表面掺杂与体相掺杂 Fe2O3 对其电子结构的影响、光电催化性能的影响。
辽宁大学 2021-04-11
一种钼酸锂纳米棒电子封装材料
简介:本发明公开了一种钼酸锂纳米棒电子封装材料,属于电子封装材料技术领域。本发明钼酸锂纳米棒电子封装材料的质量百分比组成如下:钼酸锂纳米棒65‑80%、聚乙烯醇8‑12%、脂肪醇聚氧乙烯醚羧酸钠0.05‑0.5%、异丙醇铝4‑8%、微晶石蜡4‑8%、水3‑7%,钼酸锂纳米棒的直径为50‑100nm、长度为1‑3μm。本发明提供的钼酸锂纳米棒电子封装材料具有绝缘性好、耐老化及耐腐蚀性能优良、导热系数高、热膨胀系数小、易加工、制备过程简单及制备温度低的特点,在电子封装材料领域具有良好的应用前景。  
安徽工业大学 2021-04-11
亚微米陶瓷颗粒增强铝基复合材料
本项目采用元素粉末法制备高性能的亚微米陶瓷颗粒增强铝基复合材料,突破了亚微米颗粒在基体中的分散和铝基复合材料的二次加工困难瓶颈难题,制备的亚微米陶瓷颗粒增强金属基复合材料具有高的比强度、比刚度、热稳定性,较低的热膨胀系数,优良的导热、耐磨、耐腐蚀性等特点,机加工表面光洁度高。亚微米陶瓷颗粒增强金属基复合材料的成功制备,在金属基复合材料实际应用方面取得了突破性的进展。 亚微米陶瓷颗粒增强金属基复合材料是一种极具潜力的工程材料,其在航空航天领域、汽车装甲、电子封装、高轻化自行车等方面取得了大量应用。其中以碳化硼为增强体的B4C/Al复合材料耐磨性很高,在制造喷砂嘴、电触点、摩擦和耐摩擦材料时得到了广泛的应用,并且在机器和设备端部密封件上,碳化硼为基体的B4C/Al复合材料也有出色表现。此外,碳化硼具有良好的耐酸碱腐蚀性能,在有气体腐蚀条件下工作时,效果极佳,用亚微米B4C制备的B4C/Al复合材料制备的喷砂嘴和喷丸机喷嘴在标准条件下显示出的高强度,为钨硬质合金强度的5~11倍。先后设计和开发了高尺寸稳定性高导热易加工电子封装复合材料制品,如印刷电路板板芯、军用功率混合电路、微波管的载体、多芯片组件等。亚微米SiC颗粒增强铝基复合材料具有高耐磨性、良好的耐高温性和抗咬合性能等特点,在高速列车刹车盘,制动盘、发动机活塞和齿轮箱等以及现已用于越野自行车上的车链齿轮具有广阔的应用前景。从前瞻性、战略性、经济性和基础性这几个角度来考虑,亚微米陶瓷颗粒增强金属基复合材料制备技术的发展符合具有高性能价格比,有待迅速实现产业化的要求趋势。本项目围绕航空航天用大尺寸关键承力结构件、光机结构件与精密仪表零件、电子封装器件、核能领域屏蔽材料等应用背景,部分研究成果已达到了国际先进水平。先后设计和开发了高尺寸稳定性高导热易加工电子封装复合材料制品;制备的亚微米碳化硼增强铝基复合材料被应用于制造核废料处理容器;应用于高速列车刹车盘,制动盘、发动机活塞和齿轮箱等。
东北大学 2021-04-11
Ag/SnO2复合材料的制备方法
本发明涉及银基复合材料的制备,旨在提供一种Ag/SnO2复合材料的制备方法。该方法包括:在搅拌条件下将氨水与SnCl4·5H2O的酸性水溶液同时滴加到WC悬浮水溶液中反应后,将悬浮液过滤、洗涤,真空干燥后煅烧,获得具有核壳包覆结构的复合SnO2颗粒;将颗粒与银粉球磨混合均匀得到混合粉体;将混合均匀后的粉体通过等静压压制成坯体,然后依次经过烧结、复压、复烧工艺,最后热挤压成型获得Ag/SnO2复合材料。通过本发明制备获得的Ag/SnO2复合材料,一方面保证了复合颗粒具有与SnO2相类似的优良特性,另一方面可以通过调整SnO2和WC的复合比例有效克服传统电接触材料在使用过程中因成分偏析导致的性能劣化,进而消除经长期使用后接触电阻增大、温升提高对电气使用性能的不利影响。
浙江大学 2021-04-11
关于高Tc薄膜铁电材料机制的研究
基于过去发展的基于第一性原理电子结构计算的有限温度下铁电-顺电相变模拟手段,指出Fisher等人提出的有限尺寸标度理论存在缺陷,并针对铁电-顺电相比提出修正方法。此理论缺陷存在的本质原因是理论推导过程中对体材到薄膜演变过程中哈密顿量变化的忽视,是由当时实验技术与针对具体材料物性理论模拟手段的局限造成的。新发展出来的修正方法可广泛适用于类似铁电材料的物性模拟。 研究中,以SnTe作为一个例子,来研究标度律不成立的体系;以BaTiO3为一个例子,来描述标度律成立的体系。通过对比两类材料在从体材到薄膜变化过程中电子结构与相变温度变化的规律,作者发现相变序参量的变化可以作为一个描述子,来区分此两类系统。在标度律成立的体系,体材与薄膜的相变序参量并不发生变化,这个也是70年代Fisher等人提出标度律的一个基本假设。而对SnTe这类材料,在从体材到薄膜的演化过程中,相变序参量已经发生了变化。这一机制也为寻找、预测和设计低维高Tc铁电材料提供了新思路。不同于之前研究常采用的施加应变等外部调制手段,新机制预测的低维铁电材料具备本征高Tc,更易于脱离实验室条件走向工业生产。课题组期待这一工作能激发更多高Tc铁电材料的发现。图1. 材料的相变序列(a) 满足标度律的传统铁电材料;(b) 不满足标度律的二维铁电材料;(c) 不满足标度律的一维铁电材料。当且仅当材料的低维相变序列发生改变时,标度律不成立,该材料有可能发现高Tc,即(b)(c),有待于进一步的实验发现。
北京大学 2021-04-11
超大直径难变形材料环件碾压技术
本项目所研究的超大直径难变形环件主要应用于大型机械、船舶、石 油化工、航空航天、原子能、核能等国家重大装备制造行业。在航空航天领域, 环形件是发动机及火箭的关键零件,广泛应用在航空发动机的压气机机匣、涡 轮机匣、结合环、安装边、封严环、新一代大型运载火箭储箱结构框等重要部 位。随着国家航空航天、原子能、核电能等的发展需要,对环件尺寸要求越来 越大,精度、强度、刚度方面的要求也越来越高。因此超大直径难变形材料环 件的研究对于提升我国重大装备制造行业有着至关重要的意义,主要表现在以下 几个方面: 1) 超大直径难变形环件的辗压成形工艺可显著降低环件产品内部的残余 应力水平,以满足后续机械加工的要求。结束了我国不能生产超大规格难变形 材料巨型环件的历史,对发展我国航天科技工业具有重要的意义; 2) 本项目的研究成果可以解决我国大飞机项目中发动机关键零部件的生 产,保证我国大飞机项目的顺利实施; 3) 本项目所展开的超大直径难变形环件的研究可以保证满足原子能等部 门对大型环的需要,结束我国对国外相关技术的依赖,对国家安全与经济社会 发展具有全面而长远的意义; 4) 超大直径难变形环件的生产,可以满足核电反应堆容器环件的要求, 解决核能发展的瓶颈问题,有效改善我国的能源供应结构,有利于保障国家能 源安全和经济安全。
重庆大学 2021-04-11
LED用高导热材料与散热结构优化技术
针对大功率led散热难题,研制了高导热的陶瓷金属复合基板、金属铝基板、 导热硅脂,其中,覆铜A1N基板热导率五200W/m.K;热膨胀系数W7. 42X10-6/K; 金属基板热阻W2K/W;并对水下等密闭环境下LED的散热结构进行了优化。研制 的导热材料和提出的散热技术方案为3家企业采用,应用于实际生产,解决了生 产中的实际问题。近3年来,研制的铝基板、导热硅脂和导热垫片等高导热材料 应用于企业生产的100W、120W、150W、180W等大功率LED工矿灯、路灯、隧道 灯等大功率LED灯1万余件,产值约2000万元,节约成本约200万元,同时, 在节能方面产生了巨大的社会效益。实施条件:生产陶瓷金属复合基板,有两条技术途径:热压敷接工艺;化学镀, 前者设备投入较大,工业控制复杂,但产品质量更易控制;后者设备投入少,但 产品质量的稳定性不如前者。因此,低端产品可以采用化学镀,高端的,产品质 量要求严格的检测采用控制热压敷接方法。预算:化学镀技术,投入30-50万;热压敷接:设备投入100万左右,随处理的 量和基板的尺寸而变。
重庆大学 2021-04-11
硅基新一代锂电负极材料制备
目前锂离子电池的能量密度已经越来越不能满足其在电动汽车、智能手机和大规模储能方面的应用。锂离子电池的能量密度低主要是因为所采用的正负极材料的比容量较低,尤其是负极材料石墨,其理论比容量为 372 mAh/g。目前研究最多的、最具有商业化前景的负极材料为硅基负极材料,其理论比容量为 4200 mAh/g,是石墨的十倍以上。据招商证券预计,硅基负极材料在 2020 年的市场使用量接近于 5 万吨,销售额接近于 50 亿。 然而硅基材料在充放电过程中较大的体积变化率(>300%)限制了其商业化应用,较大的体积变化导致极片碎裂以及电解液在材料表面持续分解,从而造成其循环性能剧烈下降。另外,硅基材料为半导体,其导电性较差,从而导致硅基负极材料的倍率性能较差。如何解决硅基负极材料这两大缺点是普及硅基材料在锂离子电池应用的关键。 陈永胜教授课题组结合在纳米技术和石墨烯材料领域的专长,经过近 10 几年的研究,采用低成本的原材料、易工业化的工艺技术制备了石墨烯包覆的硅基负极材料,主要技术创新点包括:1)采用独特的、具有自主知识产权的纳米技术将大粒径的硅粉进行纳米化处理,纳米化大大缓解了硅在充放电过程中体积变化的问题,从而从根本上解决了硅基负极材料循环性能差的问题;2)石墨烯包覆则充分发挥了石墨烯导电导热性能好、机械性能优异、电化学性能稳定等特点,改善了材料的锂离子扩散性能和电子导电性,大大提高了功率特性; 14隔绝了硅与电解液的直接接触,抑制副反应造成的电解液分解和材料侵蚀,提高了首次效率,延缓了使用过程中的寿命衰减;进一步减缓了充放电过程中硅的体积变化,维持材料结构的整体稳定性,极大地提升了循环特性。
南开大学 2021-02-01
牙科用藻酸盐印模材料精准投料器
本专利通过微电子电路精准控制藻酸盐印模材粉剂的量及水量并保持水温在规定的恒定温度,使最终得到的印模膏的稀稠度适当,强度适当从而取得临床适用的印模。可应用于口腔科各类使用藻酸盐印模材制取印模的操作。
天津医科大学 2021-02-01
高性能导电聚合物纳米复合材料
导电聚合物不仅在国家安全、国民经济,而且在工业生产和日常生活等领域都有极大的应用价值。导电聚合物具有防静电的特性,可以用于电磁屏蔽。导电聚合物具有掺杂和脱掺杂特性,可以做可充放电的电池、电极材料;它对电信号的变化非常敏感,因此可以做传感器;能够吸收微波,因此可以做隐身飞机的涂料;利用导电聚合物可以由绝缘体变为半导体再变为导体的特性,可以使巡航导弹在飞行过程中隐形,然后在接近目标后绝缘起爆;与纳米技术相结合,导电聚合物可以制成分子导线材料,制作分子器件和其它电子元件。 利用介孔硅为模板,在其孔道里封装导电高分子聚吡咯,形成了新的核-壳型导电高分子纳米复合材料。复合材料中聚吡咯的分解温度分别比纯样(240度分解)高出50-80度,其热稳定性提高了约20%-30%。在加电场诱导下,聚吡咯分子链上的自由电子或空穴载流子迁移而产生界面极化引起高的电流变效应。 采用嵌段共聚物(P123)为结构定向剂,分别在碳纳米管(CNT)及纳米Fe3O4存在下,以原位化学氧化聚合的方法制备出良好导电、磁性能的聚吡咯基纳米复合材料。当碳纳米管的含量超过20%时,其导电率已经达到7.0 S/cm。随Fe3O4含量的增大,复合材料的磁化强度可达24.6emu/g。
华东理工大学 2021-02-01
首页 上一页 1 2
  • ...
  • 79 80 81
  • ...
  • 207 208 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1