高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
多孔矿物纤维/ 植物纤维复合涂布空气净化材料
目前用于空气过滤的净化材料,主要以丙纶、涤纶纤维无纺布为主,其微观结构是以直径为50~100nm 、长 10~20µm 的纤维组成多孔的纤维薄膜。对空气中悬浮颗粒(包含 PM2.5)的过滤净化主要是通过多层纤维进行阻隔,存在着过滤性能与透气性相矛盾的问题,且无法有效解决。本项目采 用涂装技术将多孔矿物材料、矿物纤维材料与 ePTFE 纤维进行了复合,在多孔纤维的结点上担载了一定量多孔矿物或矿物纤维作为吸附活性中心,制备出具有吸附功能的纤维过滤材料,可实现对微细、 超微细颗粒过滤的同时产生吸附作用,这样即使存在较大的孔隙也能产生良好的净化作用,可有效解 决过滤性能与透气性相矛盾的问题。经过检测,本项目所制备的样品对空气中微细、超微细颗粒(以PM2.5 为例)具有很强的去除功能,且透气性良好。
北京工业大学 2021-04-13
异质复合结构对n型BiAgSeS材料热电性能的显著强化
 在可再生能源日益短缺及温室效应日趋恶劣的严峻形势下,Seebeck效应作为一种新的能源转化方式,可以有效地将日常生活及工业生产废热和不能被太阳能电池有效吸收的红外波段转化为亟需的电能,故而引起了科研工作者们的广泛关注。衡量热电材料能量转化效率的最重要的指标是其品质因子ZT(=S2σT/κ),如何提高材料的品质因子是热电科研工作者们普遍关注的问题。     由于本征的纳米析出相以及价键非简谐性(bond anharmonicity)的存在, BiAgSeS具有非常低的本征热导率κ;然而,因其过低的载流子迁移率极大地限制了其功率因子S2σ。何佳清教授课题组巧妙地将在二维薄膜中广泛运用的调制掺杂(modulation doping)技术推广到三维块体BiAgSeS材料中,使用具有不同载流子浓度的异质晶粒构建三维复合结构,从而极大地提升了该材料中的载流子迁移率,使得功率因子S2σ相对于均匀掺杂的对照样品提升了约87%,进而显著地提升了BiAgSeS材料的热电转化效率。文章结合了透射电子显微术和理论计算对在n型BiAgSeS三维块体复合材料中运用调制掺杂改进载流子迁移率的物理机制做了深入的探讨;该工作对调制掺杂技术在三维块体热电材料中的广泛运用颇具启发意义。
南方科技大学 2021-04-13
水泥基渗透性抗裂防水复合修复材料制备技术
本发明公开了一种水泥基渗透性抗裂防水复合修复材料及其制备方法,本发明水泥基渗透性抗裂防水复合修复材料由以下质量分数的祖坟组成:硅酸盐水泥熟料20~40%、粉煤灰3~20%、石膏2~10%、高铝水泥2~10%、硅酸钠1~4%、萘系高效减水剂0.1~1.5%、碳酸钠0.1~2.0%、整形石英砂40~70%、聚丙烯短纤维0.1~3.0%和羧甲基纤维素钠0.05~1.0%;本发明材料性能优良、无毒无污染且具有粘结牢固、渗透深度好、防水抗渗效果和抗裂效果奇佳等特点,同时生产成本低廉、制备工艺和施工方法简单、使
天津城建大学 2021-01-12
氢能源车用纳米结构镁基合金复合储氢材料
针对车载氢能源的难题,开展纳米结构镁基合金复合材料储氢研究,特别开展了Mg纳米线的储氢性能研究。 MgH2(7.6wt% H2)是理想的轻质储氢材料之一,但其缓慢的吸放氢动力学和相对高的操作温度,限制了它的发展。为了改善镁基材料的储氢性能,通过气相传输的方法制备了不同形貌的Mg纳米线。结果表明,改变载气流速、传输温度和沉积基底,可以控制Mg纳米线的长度和直径。测试结果显示,Mg纳米线降低了脱附能垒,改善了热力学和动力学性能。实验结果显示,直
南开大学 2021-04-14
汽车用高性能热作模具材料及表面复合强化技术
可以量产/n成果简介:近几年来,中国的轿车市场每年新增的车型不下百款,由于汽车大部分零部件是由模具制造成型的,仅每年新开模具就超过100亿元,因此提高模具制造质量及寿命对汽车产品质量和汽车行业的发展至关重要,具有极大的经济效益和社会效益。本成果借助大型热力学和动力学计算软件Thermo-calc&Dictra,在H13钢基础通过优化合金成分并添加微量的铌,在保持H13钢原有优异性能的前提下,改善H13钢的热疲劳性能,从而出开发一种新型优质的汽车用热作模具钢HG1钢。同时结合表面处理新工艺,将
湖北工业大学 2021-01-12
氢能源车用纳米结构镁基合金复合储氢材料
针对车载氢能源的难题,开展纳米结构镁基合金复合材料储氢研究,特别开展了 Mg 纳米线的储氢性能研究。 MgH2(7.6wt% H2)是理想的轻质储氢材料之一,但其缓慢的吸放氢动力学和相对高的操作温度,限制了它的发展。为了改善镁基材料的储氢性能,通过气相传输的方法制备了不同形貌的 Mg 纳米线。 结果表明,改变载气流速、传输温度和沉积基底,可以控制 Mg 纳米线的长度和直径。测试结果显示,Mg 纳米线降低了脱附能垒,改善了热力学和动力学性能。实验结果显示,直径为 30-50nm 的 Mg 纳米线具有良好的可逆储放氢性能。研究成果发表在 J. Am. Chem. Soc.,J. Phys. Chem. C,J. AlloysCompds 等期刊上,授权发明专利 2 项。 
南开大学 2021-04-13
熔体静电纺丝中的震荡拔河效应
国家自然科学基金项目。熔体静电纺丝不需要溶剂,比溶液静电纺丝环境友好、成本低、效率高,越来越受到国际科学界和工业界的重视,但是其纤维直径偏大,成了制约其发展的瓶颈。借鉴工业上已成功的振动力场降低粘度的方法,本课题拟引入震荡电场力,通过大量实验和介观模拟深入考察熔体静电纺丝过程中的震荡拔河效应-电场力的震荡幅度、频率、波形以及射流上电荷性质对纤维直径、高分子线团解缠、分子链取向及运动轨迹的影响规律。研究结果将对深刻理解静电纺丝过程中的分子链运动规律等基础物理现象、获得大批量高性能的纳米级纤维制备方法、开创纳米纤维大规模应用的新时代具有十分重要的意义。目前该项目在研。
北京化工大学 2021-02-01
网格砂布的静电植砂机电设备
本设备可用于网格砂布静电植砂生产工艺设计的机电设备。网格砂布是一种新颖的磨具,与普通砂布相比,它具有磨削后产生的屑末不会嵌入砂布、磨光速度快、光洁度高等诸多优点,因而国外汽车制造厂、家具厂、玩具厂等大多采用网格砂布作磨具,网格砂布的需求量很大,国内的许多厂家亦正逐步采用网格砂布。 本设备是集机械、电子、电力、高压、测量、高分子材料等技术于一体的高科技产品,性能稳定,达到并部分超过九十年代国际先进水平,替代进口,可节省外汇,大大推进了该行业的发展。 技术指标: 1.输出电压:0-60KV                     2.输出电流:0-10mA 3.植砂能力:磨料行业标准P60以细        4.工作方式:连续 5.供电电源:380V±5% 50HZ(三相四线)     6.功  耗: 2.5KVA 7.外形尺寸:3000*2800*2200(mm)
上海理工大学 2021-04-11
新型极板湿式静电烟气深度净化技术
本项目在国家自然科学基金、国家火炬计划等支撑下,由基础研究、工程 设计单位成立协同创新团队,提出了新型极板湿式静电烟气深度净化技术新思 路。对柔性阳极和亲水改性固体阳极的水膜形成机理、内在动力特性、静电场 作用机制、清灰机理以及材料稳定可靠性等方面展开了基础研究,建设了不同 烟气处理量的小试、中试和小型工业化试验装置,完成了技术关键参数规律性 试验和系统集成,初步形成了以“新型极板”为核心的专利群。 研究成果已应用在燃煤电站 100MW、300MW、600MW 等不同规模机组, 取得了显著的社会、环境、经济效益。2013 年 8 月 19 日,由中国电机工程学会 组织的鉴定委员会对本项目的核心成果之一“新型湿式静电除尘除雾技术研究及 应用”进行了鉴定。认为项目组“提出了一种浸润织物阳极静电除尘除雾工艺用 于燃煤烟气末端 PM2.5 多污染物的综合治理方法”,“采用了自主研发的具有绝 缘、疏水、耐腐蚀特性的有机纤维织物作为柔性阳极材料,替代传统金属阳极 合金材料”,“研发了适用于织物阳极的经纬限位表面张紧工艺,研制的柔性阳 极板实现了表面水膜分布均匀,具备自清灰特性,降低了喷淋用水量”,“研制 了新型湿式静电除尘除雾装置,完成了系统集成”,“项目研究成果工艺新颖, 具有原创性,具有良好的经济、社会效益和推广应用前景,达到国际先进水平, 其中,在新型电极材料研究及应用方面居国际领先水平”。
山东大学 2021-04-13
种微博加热熔体静电纺丝装置
本发明属于熔体静电纺丝设备技术领域,涉及一种微波加热熔体静电纺丝装置,推进泵的前侧面上设有推进泵按钮、推进泵开关和电子显示屏,推进泵的上端固定安装制有料筒,料筒的一端与推进器连接,另一端与物料管连接,物料管设置在微波加热腔内;物料管穿过微波加热腔与熔融喷头连接,微波加热腔的前侧面上设有微波频率调节旋钮、加热时间设定旋钮和温度控制旋钮;高压电源的正极与熔融喷头连接,负极与竖向放置的收集装置连接;熔融喷头与收集装置之间的距离为10 20厘米;高压电源上设有高压电源开关和电压调节旋钮;其结构简单,操作方便,使用安全,成本低,纺丝效率高,自动化程度高,环境友好,利于产业化大规模制备纳米纤维。
青岛大学 2021-04-13
首页 上一页 1 2
  • ...
  • 47 48 49
  • ...
  • 259 260 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1