高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
基于分子管理的石脑油资源优化利用
为提升石油资源高效利用的科技水平,从分子炼油出发,变“馏分管理的宜烯则烯、宜芳则芳、宜油则油”为基于“分子管理的宜烯则烯、宜芳则芳、宜油则油”的石脑油资源优化利用研究,以分子管理为策略,通过将石脑油中的正、异构烃分离,富含正构烷烃的脱附油作为乙烯裂解原料,富含非正构烃的吸余油作为催化重整原料或高辛烷值清洁汽油调和组分,乙烯收率和芳烃收率均可提高约十个百分点,汽油辛烷值可提高十五个单位左右,可以在宜烯则烯、宜芳则芳、宜油则油基础上进一步集成优化炼厂的石脑油资源,实现对石脑油资源的分子尺度管理。
华东理工大学 2021-04-13
高效防积灰离心叶轮优化设计
在离心风机的许多应用场合都会遇到叶轮积灰问题,比如在水泥、炼钢以及化工等行业。叶轮积灰粘附容易破坏叶轮的动平衡,引起风机的剧烈振动,甚至损坏轴承,给用户造成较大的损失。由于叶轮积灰粘附的原因,使得风机需要更换叶轮甚至更换整机的例子也不在少数,如某公司生产的风机,叶轮粉尘粘附非常严重,风机运行3小时左右就会出现剧烈的振动,停机清洁粘附的粉尘后,再次运行3小时左右又会出现剧烈的振动,严重影响了用户的正常生产。最后只好更换了风机,才勉强解决了叶轮的粘附问题,但是大幅降低了风机的效率。 我们设计开发的离心风机叶轮,采用遗传算法结合神经网络预测模型和聚类分析等先进的现代优化算法,可高效快速地在大范围的离心叶轮参数范围内寻优,迅速设计出具有良好防积灰效果的离心风机叶轮,为企业的高效长期安全运行提供技术支撑。
西安交通大学 2021-04-11
从农业环境中挖掘自然能源并将其高效转化为电能的研究成果
环境温湿度、光照强度、水分、盐碱度、作物生理指标……这些参数关系农作物生长,现代农业通过农业信息智能感知技术便可轻松“一网打尽”。 然而实时监测这些指标需要电力驱动,电力无疑是智慧农业蓬勃发展的“源头活水”。田间地头常常难以铺设管线,而电池有限续航能力和污染风险又比较突出。因此发展农业信息“无源感知”是未来智慧农业一大趋势。 为更好地解决这一难题,浙江大学生物系统工程与食品科学学院IBE团队平建峰研究员课题组,提出了一种简便有效的方法,从农业环境中挖掘自然能源并将其高效转化为电能。首次将摩擦纳米发电机技术应用于农用纺织品中,并用于降雨时雨水能的收集,通过能量转化获取电能。 这项研究,近日发表在国际知名期刊《纳米能源》( Nano Energy )上,论文第一作者为浙江大学生物系统工程与食品科学学院2020级博士研究生姜成美 ,通讯作者为平建峰研究员。 功能化纱线的制备流程及其在农业中的应用场景把摩擦纳米发电机装进农用纺织品的纱线里 南方地区经常暴雨成灾,造成农业生产的巨大损失。农用纺织品在大棚设施中最为常见,它能够遮阴挡雨,保护农作物。 如何从农业环境中挖掘能源? 浙大科研人员将这两者巧妙结合,通过纱线表面功能化,将摩擦纳米发电机依附在纱线上,织成智能化农用纺织品,利用雨水冲刷时的电子转移与流动产生电流,源源不断地为智慧农业供能。装载摩擦纳米发电机的纱线可以说是智慧农业的“无源活水”。 这个研究灵感来自一场突如其来的大雨:仲夏时节,一场突如其来的倾盆大雨透过来不及关闭的窗户摧残了窗台边的绿植。这引起了研究人员的思考:“农作物所处的环境只会更恶劣,那么我们就想办法利用它的恶劣。”大棚不仅可以作为作物、动物的“保护伞”,还可以作为雨滴能的收集器。 实验数据显示,在9.5牛顿的连续力作用下,3厘米长的纱线就能产生7.7伏的电压。 平建峰介绍,未来通过连接储能设备,这些被改造的农用纺织品,不仅可以为种植业和畜牧业提供保护以提高农畜产品质量与产量,还可以为物联网感知器件源源不断地输送电能,从而开展农业信息的无源监测和实时提供天气状况。 功能化纱线在农用纺织品上的应用绿色能源在智慧农业中具有广阔应用 为什么雨滴的能量可以转化成电能呢? 这是因为对农用纺织品的纱线进行了特殊改造。科研人员在其表面覆盖了两层特殊材料——导电的碳化钛纳米材料和不导电的聚二甲基硅氧烷(一种高分子聚合物)。 功能化纱线收集雨滴能的原理 该聚合物能够防水并与环境中的雨水发生电子转移。而碳化钛感应电极,不仅具有高导电性能,还因其高电负性可以助力表面聚合物抢夺电子。因此在实现农用纺织品原有的农用保护材料、保温、遮阳、水土保持、排水灌溉、种子培育基材的功能基础上,还能从农业环境中源源不断地获取能源,为智慧农业提供驱动力,实现农业信息“无源实时感知”。 平建峰说,这两种材料具有良好的生物相容性,而且整个制备过程易于规模化和工业化。
浙江大学 2021-04-11
一种机床主轴的振动能量收集装置及方法
本发明涉及振动能量收集技术领域,具体为一种机床主轴的振动能量收集装置及方法,该装置包括能量收集器、机床主轴、以及主轴箱壳体,所述机床主轴设有固定轴承,所述主轴箱壳体包括第一侧壁和第二侧壁,所述第一侧壁垂直于所述第二侧壁,所述固定轴承的外壁与所述第一侧壁之间设有支撑架,所述第二侧壁与所述支撑架之间设有能量收集器,所述能量收集器通过磁致伸缩材料收集所述机床主轴的振动能量,将振动能量转换成电能,进而可以实现对机床的其他元件供电,节省了部分外部电源的供给,同时不影响机床主轴的正常运行,并有利于振动的传递。
杭州电子科技大学 2021-05-06
一种针对复杂结构的瞬态能量响应高精度预示方法
本发明提供了一种针对复杂结构的瞬态能量响应高精度预示方法,考虑子系统间能量传递的时变项(img file='DDA0001438196050000011.TIF' wi='330' he='110' img-content='drawing' img-format='TIF' orientation='portrait' inline='no'/)结合复杂结构的损耗因子矩阵η,建立结构各子系统的瞬态功率平衡方程,给定初始边界参数,采用四阶?五阶Runge?Kutta算法计算得到结构各子系统的瞬态能量响应;相比于传统方法仅考虑能量的时变项,本发明通过考虑了复杂结构各子系统间能量传递的时变项,建立了更为完整的复杂结构各子系统瞬态能量平衡方程,显著提高了目前瞬态统计能量分析方法在瞬态能量响应预示中的预示精度,拓展了目前瞬态统计能量分析方法的研究范围,可以解决不同耦合强度结构的瞬态能量响应分析,同时结合商业统计能量分析软件,可以解决复杂结构的瞬态能量响应预示问题。 1 
东南大学 2021-04-11
轨道交通车辆制动能量气动回收再利用装置
一种轨道交通车辆制动能量气动回收再利用装置,属于轨道交通车辆技术领域。本实用新型由安装在 车辆转向架车轴上的凸轮,安装在转向架构架上的其余部件组成。其中凸轮、滚子和气缸活塞杆构成凸轮 机构,将车轴的旋转运动转化为气缸活塞杆的往复运动;排气单向阀、吸气单向阀连接在气缸的无杆侧,在气缸活塞杆的往复运动下,实现排气和吸气功能,将机械能转换为气压能。该装置能够将制动能直接回 收成气压能,以供车辆系统使用。
南京工程学院 2021-04-11
一种针对时变结构的瞬态能量响应高效预示方法
本发明提供了一种针对时变结构的瞬态能量响应高效预示方法,基于时变结构的能量密度控制方程,结合时变结构各子系统在不同频带内的时变内损耗因子和子系统间的时变耦合损耗因子,建立时变结构各子系统的瞬态能量控制方程,给定初始边界参数,采用四阶?五阶Runge?Kutta算法计算得到时变结构各子系统的瞬态能量响应。本发明发现了能量密度控制方程中内损耗因子引起的功率流动项,对空间体积积分后建立了时变结构各子系统的能量控制方程,从而将能量分析方法推广到了时变结构的动力学响应分析,拓展了目前能量分析方法的研究范围。同时,相比于传统的离散化方法,本发明采用能量的方法建立结构各子系统的能量控制方程,显著提高了计算分析的效率。
东南大学 2021-04-11
一种汽车制动能量回收装置及其分段控制方法
本发明涉及汽车能量回收,旨在提供一种汽车制动能量回收装置及其分段控制方法。该装置包括超级电容和电机、低压端电流表、双向Buck-Boost变换器、高压端电流表、PWM控制器、低压端继电器和高压端继电器;低压端继电器和高压端继电器均为单刀双掷开关,包括动触点、第一静触点和第二静触点;低压端电流表设于超级电容与低压端继电器的动触点之间,高压端电流表设于电机与高压端继电器的动触点之间;各设备分别通过信号线连接至PWM控制器。本发明可直接用于现有电动汽车和油电混合动力汽车上,提高其制动能量回收的效率、增加节能效果、延长其续驶里程。
浙江大学 2021-04-11
高能量、长寿命的水系可充放 镍铋电池
利用三维高结晶度的Bi纳米结构抵消储能转换反应引起的结构内应力,成功构筑了首款可充放的Ni//Bi电池(Adv. Mater., 2016, 28, 9188–9195.)。为了进一步提高镍铋电池的能量密度和寿命,该团队在前期基础上最近通过原位活化的策略制备了一种高载量的三维多孔的铋-碳复合材料,作为水系镍铋电池的高性能负极材料。这种多孔氮掺杂的碳三维结构不仅可以实现高载量铋的均匀负载,而且可以提供快速的电子传输和离子扩散的通道,有利于提高电极的容量和倍率性能。因此,制备的铋-碳复合电极具有很好的润湿性和活性面积,表现出较高的容量(2.11 mAh cm-2和166.2 mAh g-1)和优异的倍率性能(2.11 mAh cm-2和120 mA cm-2)。更重要的是,基于这种铋-碳复合材料为负极,Ni-NiO为正极组装的柔性镍铋水系可充放电池具有很高的能量密度(16.9 mWh cm-3)和出色的循环寿命(充放电5000次后仍有94%的容量保持率),优于很多研究报道的水系电池。
中山大学 2021-04-13
一种弹簧储能式汽车制动能量回收装置
汽车在制动时,一般利用车轮制动器将汽车的势能和动能转化为热能,车轮制动器是根据摩擦原理制成的;在汽车长时间连续制动时,制动器的热负荷非常大,使得制动鼓(盘)的温度大幅度升高,从而使摩擦因数下降、磨损加大,结果使制动器失去或部分失去制动效能。部分大中型商用车安装的非摩擦原理的电涡流缓速器或液力缓速器能降低制动器的热负荷,但还没有制动能量回收的功能;电涡流缓速器还需要励磁,额外消耗电能。本专利设计的制动能量回收装置利用发电机发电,发出的电能给蓄电池充电,回收制动能量,当汽车制动至较低车速时,发电机转速
长沙理工大学 2021-01-12
首页 上一页 1 2
  • ...
  • 27 28 29
  • ...
  • 576 577 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1