高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
基于音频信号特性分类的无参考音频质量评价方法和系统
本发明提供了一种基于音频信号特性分类的无参考音频质量评价方法和系统,包括步骤:步骤 1, 基于有参考音频质量评价模型建立训练模型,采用机器学习获取不同类型音频信号的音频质量与网络参 数的关系,即无参考音频质量评价模型;步骤 2,在音频信号网络传输中,将当前丢包率、当前延迟时 间和当前丢包数据的音频信号类型输入无参考音频质量评价模型,获得当前音频质量。本发明对不同类 型信号采用不同的质量评价关系式进行质量评价,能更真实地反映用户体验。
武汉大学 2021-04-14
一种磁共振用鼠标及其制作方法和信号传输装置
本发明公开一种磁共振用鼠标,包括上外壳、下外壳、轨迹球、电路板和电缆,上外壳、下外壳的内表面涂覆有银铜导电漆层,银铜导电漆的浓度为13%-17%;本发明还公开了磁共振用鼠标的制作方法和信号传输装置。本发明能够满足功能磁共振的临床使用,避免信号干扰,保证远端计算机准确接收到受试者的响应。
四川大学 2016-10-08
基于光谱拟合与差分算法的光纤传感动态信号解调方法
本发明公开了一种基于光谱拟合与差分算法的光纤传感动态信 号解调方法,包括:扫描得到光谱纹波;对光谱纹波进行拟合获得静 态光谱;将光谱纹波与静态光谱进行差分处理获得差值信号;对光谱 纹波的极值点进行拟合获得上下边缘包络曲线;对上下边缘包络曲线 进行差分处理获得光谱变化函数,将差值信号与光谱变化函数进行归 一化处理,获得去包络后差值信号,根据扫描速度和初始波长将波长 换算为时间,获得去包络后时域动态信号。本方法对纹波光谱及其拟 合曲线进行差分获得动态信号,可以消除诸如温度、湿度等环境干扰, 且恢复的动态
华中科技大学 2021-04-14
一种能隐藏反馈时延特性的激光混沌信号产生装置
本发明公开了一种能隐藏反馈时延特征的激光混沌信号产生装置。通过在垂直腔面发射激光器的环形反馈腔中引入可调偏振片,即使在较大反馈强度下,只要合理地调节可调偏振片的角度,也能成功地隐藏激光混沌信号的反馈时延特征。本发明装置在保证了产生激光混沌信号的基础上,实现了在较大反馈强度下的混沌载波的时延隐藏特性,增强了基于垂直腔面发射激光器的混沌通信系统的安全性。
西南交通大学 2016-10-19
养殖环境微生物监测及其传染效果与气溶胶的发生、传播和感染机制
针对规模化畜禽生产中动物健康、环境卫生和牧场的废气排放造成的社区环境污染,以及动物源人兽共患病的流行和“超级细菌”导致的公共卫生问题,受17个国家、省部和国际合作项目资助,申请人系统地对畜禽场舍内外环境微生物监测,在国内首次阐明密集的畜禽饲养使微生物气溶胶的含量升高、环境质量变坏、并向场舍外扩散;在国际上首次建立了病毒气溶胶传染模型,揭示了禽流感等4种病毒气溶胶的发生、传播及感染机制,认识了疫病气源性传染的过程与规律,丰富了流行病学理论。 从事该领域工作20余年,37名博、硕研究生参与,发表SCI论文35篇,总影响因子116,他人引用536次;检测技术获得2项国家发明专利;一项国家国际合作项目验收为优秀。 (1)确认了畜禽场舍的微生物气溶胶的来源及其传播。即对养鸡猪牛兔等场舍(共126个场)及场舍外不同距离的气载需氧菌、厌氧菌、革兰氏阴性菌及内毒素、真菌及真菌毒素监测,获得了其含量及不同菌群的构成成分;揭示了养殖环境微生物气溶胶向场舍外包括社区居民环境的扩散,在200m之内污染严重。借此,评估了畜禽舍环境卫生和疫病流行风险及对从业人员的传染危害,制定了防控措施;创立了规模化生产“环境性疫病学说”;提出了舍微生物气溶胶既是环境质量指征,又是病原传播感染媒介的学说。 (2)阐明了源于畜禽舍的微生物气溶胶向场舍外扩散,在国际上首次把基因组学技术应用于畜禽舍的微生物气溶胶溯源鉴定。采用PFGE、ERIC和REP-PCR对牧场舍内外环境中分离的指示细菌溯源发现,从牧场舍外下风方向(10-200m)分离的多数微生物来源于舍内空气或粪便(粪便中分离到的与舍内空气中的部分大肠杆菌(鸡舍34.1%、牛栏41.8%)来源相同)。揭示了牧场动物产生的微生物气溶胶不仅在畜禽群内扩散,而且能向场舍外环境传播。首次构建了气源性传染病的传播模式,有公共卫生和流行病学意义。 (3)发现了源于动物体携带毒素基因的病原菌气溶胶的发生与传播。对养鸡猪牛场(共33个)舍内、舍外环境分离的380株气载大肠杆菌携带主要毒素基因的解析发现,鸡舍携带LTa基因的菌株最多为53.85%(63/117)、猪舍携带LTa和STb基因的分别35%和30%、牛舍58.74%大肠杆菌携带1至4种毒素基因。探明了畜禽传染病病原的传播过程。 (4)验证了畜禽饲养中“超级细菌”和泛耐药菌的出现及扩散。应用分子生物技术对养鸡猪牛场舍内、舍外环境分离的426株肠球菌和149株金葡菌耐药基因鉴定,发现了传统的超级细菌:在养鸡场舍内外8株金葡菌为MRSA-耐甲氧西林金葡菌,并携带耐药基因;36株肠球菌携带耐万古霉素vanA或vanB基因。14.55%(62/426)的肠球菌对β-内酰胺酶类抗生素耐药等。揭示了养殖环境耐药菌的产生与传播状况和滥用抗生素导致的危害风险。 (5)确认养殖环境3%-13%气溶胶粒子属于PM2.5。在鸡猪牛舍分别为3.7%、4.9%、13.4%的粒子Dae50<1µm,这些粒子能够到达肺泡,对动物及饲养员的感染危害更大。该结果为养殖环境饲养卫生管理及卫生标准的制定提供参考,丰富了感染理论。 (6)建立了AIV、NDV等病毒气溶胶的发生、传播及感染模型,阐明其气源性传染的机制与风险。
山东农业大学 2021-04-23
怀进鹏:胸怀国之大者 建设教育强国 推动教育事业发生格局性变化
5月6日,教育部党组书记、部长怀进鹏在《学习时报》撰文《胸怀国之大者 建设教育强国 推动教育事业发生格局性变化》。文章指出,十年来,教育服务科技与经济社会发展能力显著增强。全国60%以上的基础研究、80%以上的国家自然科学基金项目由高校承担。高校参与破解了一大批关键核心技术“卡脖子”问题,成为国家自主创新生力军。高层次人才的培养输送、高水平科研成果源源不断的产出,为经济高质量发展提供了强大智力支撑,为民族复兴注入了强劲动力。
学习时报 2022-05-06
昆明动物所等揭示阿尔茨海默病精神症状发生的神经环路基础
11月1日,中国科学院昆明动物研究所研究员李家立团队在Cell Reports上,发表了题为Hyper-excitability of corticothalamic PT neurons in mPFC promotes irritability in the mouse model of Alzheimer’s disease的研究论文。该研究文利用小鼠疾病模型解析了阿尔茨海默病易激惹症状发生的神经环路机制。
昆明动物研究所 2022-11-07
一种基于应变信号近似熵的风洞试验天平的评估方法
成果描述:一种基于应变信号近似熵的风洞试验天平的评估方法,其做法主要是,在飞行器模型顶端内壁、模型框架和天平上分别安装模型、框架、天平三向应变片,对三个片测出的各向应变信号进行傅里叶变换得到频谱信号,进而计算出0~300Hz内六个频带的近似熵特征值,再分别计算模型、框架同向应变信号的近似熵特征值的差值,以及模型与天平同向应变信号的近似熵特征值的差值;当各向的这两种应变近似熵特征值的差值均在规定范围内时,评估结果判定天平的测试数据可信,否则判定不可信。从而保证风洞试验时通过天平测出的模型的力学数据准确、可靠;为航空航天飞行器提供更准确、可靠的试验数据。市场前景分析:风洞工程技术领域。与同类成果相比的优势分析:技术先进,性价比较高。
西南交通大学 2021-04-10
相控阵三维声学摄像声纳实时信号处理和图像构建关键技术
本项目在 2 项国家自然科学基金项目和国家"863"计划海洋重大专项连续 3个五年计划滚动支持下,历经 10 多年产学研联合攻关,研究并掌握了基于稀疏换能器阵列的三维成像规律,发明了适用于近场和远场条件下的换能器阵列稀疏方法,解决了换能器阵元数量巨大所导致的高系统复杂度难题;研究了波束形成算法的计算机制,发明了分布式子阵波束形成实时处理算法和动态三维图像构建方法,实现了水下高分辨率三维场景的实时成像;发明了基于大规模 FPGA 的并行处理系统架构,实现了 128×128 个波束信号的高速实时计算,成功研制了高分辨率相控阵三维声学摄像声纳系统,为我国海底探测和水下安防等提供了一整套高端先进的探测手段。本项目的成果打破了国外的技术垄断,填补了国内空白,作为国家重大科技成果参加了“十一五”国家重大科技成就展。本项目共申请国家发明专利 18 项,其中授权 14 项;获得美国发明专利授权 2 项;获得软件著作权 3 项;发表 SCI/EI论文 16 篇;经由两位院士和其他专家组成的专家组鉴定,项目总体技术水平达到国际领先,为行业进步起到重要的推动作用。
浙江大学 2021-04-11
一种无人机电磁信号管理和调制方式识别方法
本发明公开了一种无人机电磁信号管理和调制方式识别方法,属于电磁信号存储和识别技术领域。所述识别方法首先获取无人机电磁信号详细信息并存储,然后构建调制方式识别模型,输入电磁信号波形和调制方式数据迭代训练调制方式识别模型参数,实现对未知无人机电磁信号波形的调制方式识别。
北京航空航天大学 2021-04-10
首页 上一页 1 2
  • ...
  • 55 56 57
  • ...
  • 399 400 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1