高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
理学院大数据研究团队在人工智能与大数据处理领域发表系列高水平研究成果
我校理学院大数据研究团队在人工智能与大数据处理技术研究方面取得系列进展,研究成果分别发表在IEEE Transactions on Neural Networks and Learning Systems、IEEE Transactions on Cybernetics和Information Sciences三大人工智能顶级期刊。神经网络是人工智能领域中目前最为火热的研究方向——深度学习的架构基础。虽然深度学习在近几年发展迅速,但是关于如何设计最优神经网络架构的问题仍处于探索阶段。该团队分别针对人工智能中神经网络结构复杂、高维大规模数据存在无效和冗余特征、难以获取长时序信息等问题与缺陷,设计出了一系列网络结构优化、大数据特征选择和时序循环神经网络模型,有效改善了上述不足,提高了人工智能模型的学习性能。 题目为《带Group Lasso惩罚与控制冗余的神经网络特征选择》(Feature Selection using a Neural Network With Group Lasso Regularization and Controlled Redundancy)的研究论文发表在人工智能领域权威国际期刊IEEE Transactions on Neural Networks and Learning Systems。王健副教授和博士生张华清为该论文共同第一作者, 我校荣誉教授Nikhil R. Pal院士(印度统计研究所)参与指导,中国石油大学(华东)为第一署名单位。该项工作得到国家自然科学基金、国家科技重大专项、山东自然科学基金、中央高校基本科研业务费、中国石油天然气集团公司重大科技项目以及山东省高校青年创新科技支撑计划的资助。 特征选择技术也称属性选择,是指从原始特征或属性中选择出最有效的特征或属性以降低数据维度的过程,它是人工智能数据预处理环节的重要步骤,也是大数据处理技术的重要环节。该项工作在神经网络中嵌入Group Lasso惩罚项并实现特征冗余控制,在选出对解决问题最有帮助、蕴含信息量最大的特征或属性的同时,控制所选特征子集的冗余程度,以达到降维的最优效果,从而使模型的泛化能力更强,降低神经网络模型产生过拟合的风险。 题目为《基于L1正则化的神经网络结构优化模型设计与分析》(Learning Optimized Structure of Neural Networks by Hidden Node Pruning With L1Regularization)的研究论文发表在国际人工智能领域权威期刊IEEE Transactions on Cybernetics。硕士生谢雪涛和博士生张华清为论文共同第一作者,王健副教授为通讯作者,我校荣誉教授Nikhil R. Pal院士(印度统计研究所)参与指导,中国石油大学(华东)为第一署名单位。该项研究成果得到了国家自然科学基金、山东省自然科学基金和中央高校基本科研业务费的资助。 该项工作借助L1正则子具有的稀疏表达能力,提出两种神经网络结构优化学习模型;本项工作另外一个突出贡献就是提出了一种简单且具有通用性的收敛性证明方法,同时保证了模型设计的合理性。实验结果表明所提出模型具有强大的鲁棒性、广泛的适用性、理想的剪枝能力和良好的泛化能力,适用处理高维大数据。该研究成果在人工智能与深度学习构造最简网络结构方面具有很强的指导作用和应用推广价值。
中国石油大学(华东) 2021-02-01
基于真实世界临床数据的科学研究与中药新药发现平台 ——中医临床数据仓库平台及挖掘分析方法
在医学领域首次应用商务智能软件(Business Objects XI)作为中医临床数据仓库OLAP分析的软件基础。开发实现了基于细节数据模型、多维数据模型和海量临床诊疗数据的探索性分析、展示系统,分析展示的内容包括名老中医经验传承、重大疾病的病证及临床表现要素关系等的主题分析集。可从数据概况、方剂、药物、疾病、症状、治法和证候等方面分别对名老中医和重大疾病临床数据进行多种关系知识的探索性分析。同时,对分析结果可进行实时查询、导出和展示(下图是一位名老中医某经典处方的临床应用证候分布情况)。    本实验室与中国中医科学院合作进行中医临床数据仓库与挖掘分析平台,以及中医临床数据挖掘方法的研究,实现了对中医临床采集病历数数据的集成与整合,数据挖掘与分析的中医临床数据仓库及挖掘分析平台,该平台旨在支持从真实世界中医临床诊疗中产生海量科研分析用数据,并以真实、高质量的数据为基础进行中医临床与理论研究,为中医临床疗效评价、临床中药新药创制提供客观的医学证据和适宜的数据分析方法。该成果于2009年12月获得国家科技进步二等奖。   名老中医OLAP展示例子 1.2多维分析与复杂网络分析系统   以中医临床数据中症-证-治的复杂关系和复杂网络分析方法研究为出发点,开发实现了中医临床复杂网络分析系统。该系统包括如联机数据筛选、复杂网络建模、统计特性分析、可视化网络数据筛选等基本功能,能够支持中医临床诊疗数据中的疾病(中西医)、症状、证候、药物等实体内部元素以及实体之间元素的网络模型构建和多种复杂网络分析方法如节点中心性分析、社团分析、节点相似度分析等。从大量的临床数据中分析获得临床核心处方及其主要适应症,以及随症加减信息。该系统采用Eclipse 富客户端(Rich Client Platform, RCP)和Java语言开发(下图是该系统的主界面)。  在医学领域首次应用商务智能软件(Business Objects XI)作为中医临床数据仓库OLAP分析的软件基础。开发实现了基于细节数据模型、多维数据模型和海量临床诊疗数据的探索性分析、展示系统,分析展示的内容包括名老中医经验传承、重大疾病的病证及临床表现要素关系等的主题分析集。可从数据概况、方剂、药物、疾病、症状、治法和证候等方面分别对名老中医和重大疾病临床数据进行多种关系知识的探索性分析。同时,对分析结果可进行实时查询、导出和展示(下图是一位名老中医某经典处方的临床应用证候分布情况)。  获奖证书   1.中医临床数据仓库与挖掘分析平台 通过分析中医临床数据元素及其多维、多层次的关系特点,研究设计了中医临床参考信息模型,以及为基础构建中医临床数据仓库细节数据模型和多维数据模型,建立以数据仓库为核心的数据整合、数据抽取/转换/转载和数据整理、数据挖掘、OLAP和统计分析的智能信息处理平台。该平台以中医临床数据仓库及其运行环境工具的构建为基础,基于实际的临床诊疗数据,实现对中医诊疗数据进行多主题、多粒度、多需求、高效、快捷的展示、研究和查询检索,并支持基于Web的OLAP主题应用,为名老中医经验继承研究、中医临床评价研究和临床科研提供实际的诊疗数据证据和知识来源,以支持临床科研决策分析,满足中医临床评价研究的探索性分析需求。针对中医临床数据的特点,研究体现中医临床数据模型特点的数据挖掘新方法,为面向中医临床研究的数据挖掘和机器学习方法研究提供新的思路和研究方向。该平台的构建初期以重大慢性疾病:中风、冠心病和糖尿病诊治规律,以及名老中医经验传承研究为支持目标。   中医临床数据仓库平台   1.1中医临床数据预处理技术临床数据的预处理包括数据整合、数据整理和数据转换等技术,我们面向中医临床数据结构内容以及中医临床研究的分析需求,实现具有完善的数据抽取-转换-装载(Extraction-transforming-loading,ETL)、数据整理和数据转换导出功能的数据前处理软件。该软件针对医学数据利用中的分布式(多采集点)采集、患者隐私保护和大规模数据处理的特点,采用灵活的数据映射配置和临床术语库衔接等方式把各采集点数据导入到临床数据仓库中,并支持批量数据核查和数据规范整理(对临床数据中的术语性数据如症状体征、诊断和药物等进行概念化语义规范)功能。   在医学领域首次应用商务智能软件(Business Objects XI)作为中医临床数据仓库OLAP分析的软件基础。开发实现了基于细节数据模型、多维数据模型和海量临床诊疗数据的探索性分析、展示系统,分析展示的内容包括名老中医经验传承、重大疾病的病证及临床表现要素关系等的主题分析集。可从数据概况、方剂、药物、疾病、症状、治法和证候等方面分别对名老中医和重大疾病临床数据进行多种关系知识的探索性分析。同时,对分析结果可进行实时查询、导出和展示(下图是一位名老中医某经典处方的临床应用证候分布情况)。   名老中医OLAP展示例子    以中医临床数据中症-证-治的复杂关系和复杂网络分析方法研究为出发点,开发实现了中医临床复杂网络分析系统。该系统包括如联机数据筛选、复杂网络建模、统计特性分析、可视化网络数据筛选等基本功能,能够支持中医临床诊疗数据中的疾病(中西医)、症状、证候、药物等实体内部元素以及实体之间元素的网络模型构建和多种复杂网络分析方法如节点中心性分析、社团分析、节点相似度分析等。从大量的临床数据中分析获得临床核心处方及其主要适应症,以及随症加减信息。该系统采用Eclipse 富客户端(Rich Client Platform, RCP)和Java语言开发(下图是该系统的主界面)。     中医临床复杂网络分析系统  1.3 真实世界中医临床有效处方发现系统 中药新药创制与研发是极具挑战和机遇的领域,当前化学制药和单成份药物研发已经出现明显的瓶颈,传统植物/天然药以及多成份复方药物的研发成为国内外关注的焦点。而从多成份调控和多靶点机理的研究为主要视角的网络药理学更成为新的趋势和方法。针对中医临床诊疗过程中具有证-治-效信息,且个体性的真实世界诊疗实践特点,我们研究基于大规模临床诊疗数据进行有效处方分析和发现的问题,通过对以中药复方为重点的治疗手段药物组成原理的分析,基于复杂网络模型和方法研制形成了有效核心处方及适应症分析方法、有效临床中药筛选与发现系统,对基于真实世界临床诊疗数据分析获得有效处方知识的方法、技术平台和示范应用进行了探索和初步实践,初步表明从真实世界临床诊疗数据中发现和挖掘有效方药是一种可行的途径,有望为中医新药创制提供可以验证的新处方、新药物等临床有效目标药物。     1.  中医临床数据挖掘分析方法 海量观察型临床数据是中医辨证论治数据的主体内容,具有复杂、多维和多关系的特点。从大规模中医临床观察数据中分析提炼形成有意义的临床假设或诊疗知识如有效处方、人群划分、药症关系以及多阶段优化治疗方案等,是实现从复杂、系统的中医辨证论治过程中发现并确认有效优化的临床诊疗处方及其药物组成的基本方法。中医临床数据包括门诊数据和住院数据两大主要部分,其数据内容由临床表现、诊断和治疗(临床疗法)三部分核心内容(如下图),其中辨证知识、证候分布、药症关系、方证关系和药物组成等是数据挖掘和分析的主要目标,而所有这些知识的有效性的评价依据是临床疗效,即确认和发现临床有效的中医诊疗知识是中医临床数据挖掘分析方法的主要有价值研究目标。    中医临床数据挖掘问题:在疗效信息的约束下,验证和发现有价值的临床诊断/治疗关系知识。  2.1基于复杂网络的中药配伍分析方法 人们通过对中医临床处方数据的初期分析,并与临床专家的交流中发现,名老中医的临床复方的组织特性体现在两个层次。第一层次为临床医生一般以经典复方(包括经方、时方和验方等)为基础进行临床处方;第二层次为在药对或药症关系基础上的药物随症加减处理。这两个层次的临床处方配伍过程形成了具有核心处方结构,而又具有较大灵活性的处方集合。因此,通过对名老中医处方集的共性网络结构分析,能够发现体现其处方思维和学术特点的核心处方配伍结构,从而辅助进行名老中医经验的传承和整理研究。通过应用基于无尺度网络现象的网络分析方法进行研究。无尺度网络作为复杂系统研究的一种实证现象和方法,对基于网络研究复杂现象和复杂系统的方法具有很大的推动作用。具有宏观无尺度现象的网络在拓扑上存在幂律现象,即节点的度分布服从幂函数分布。这在医生处方中的具体体现就是某医生对药物的使用具有比较集中的趋势,某些名老中医偏好使用某些药物,使得这些药物的已有或潜在功效得到更大的发挥或挖掘。 我们基于网络中权值的幂律分布规律,实现了多层核心子网分析方法,能够从复杂的中药配伍网络中抽取多层核心子网。该算法已经在名老中医处方配伍经验的分析中得到广泛应用。其得到的结果具有直接而明确的临床含义,且可靠性较强。第一层核心子药物子网一般解释为共性的核心处方;第二层解释为主要药物配伍;第三层解释为次要药物配伍。这些药物配伍分别对应样本的核心病机如主要疾病和主要证候等、兼证和加减症状等。以下是两类特定中药处方:1287个肝脾不调证(GPBT)处方和752个2型糖尿病合并代谢综合征处方的分析结果。   特定中药处方的核心药物配伍网络和主要加减网络,其中的网络中的节点是药物,边的权重表示两相关药物配伍使用的次数。 2.2基于隐主题模型的疾病人群临床特征类别分析方法 症状-中药-诊断主题模型(Symptom-Herb-Diagnosis Topic model,SHDT), 用来提取中医临床数据中的症状、中药和诊断间的隐主题结构。SHDT模型是LDA主题模型在多关系应用中的扩展。该模型的核心思想是假设一类样本里面包含有多个主题,例如,一类糖尿病人群有不同的并发症,且这些主题所包含的信息特征(以症状来表达)具有相对完整性和独立性。SHDT把每个主题看作是症状上的多项式分布,并通过症状来表达主题的内容;同时,把每种中药看作是主题上的多项式分布,因为一类中药可以治愈多种症状/疾病;又因为一种诊断包含多种症状/疾病,于是把诊断看作是对主题的描述,构建一种“症状-中药-诊断”主题模型。SHDT模型这种分析原理和思路与中医辨证论治过程基本吻合,它可以客观地按照症状找到自然分类人群,给出诊断描述特征和中药治疗特征。SHDT模型分别在2型糖尿病、冠心病和肝炎等慢性疾病中进行人群特征分析。实验结果说明了该模型具有较好的适宜性和科学性,分析结果能够较为完整的反映特定疾病中相关的主要人群特征类别。   症状-中药-诊断主题模型,图中三个黑色圆圈,代表显变量(观察变量),其中s 表示一个采样症状,表示患者p的所有药,表示患者p的所有诊断。白色圆圈代表隐变量,其中z 采样症状s对应的主题,x表示s对应的药,u表示s对应的诊断。矩形框表示重复采样。外部矩形框表示在集合中有P个患者。内部矩形框表示对患者p的个症状、主题、药物以及诊断重复采样。 2.3基于内隐对照和部分可观察马尔可夫决策过程模型的动态序贯处方治疗方案优化方法 中医辨证论治是症-治-效紧密相关的个体、动态的复杂干预过程,动态序贯干预是中医临床治疗慢性疾病的基本方法。以患者为轴心的治疗原则和医生的个体性特点,使得中医动态序贯干预过程中包含多样化的治疗方案。在临床诊疗经验知识的形成阶段,医生往往通过对治疗前后患者健康状态的判断,试图获得较好的治疗方案的认识,进而逐步形成固化的有效经验性治疗方案。因此,在无外部对照的情况下,如何从大规模的复杂多维临床关系数据中发现并确认在临床实际中较优的动态序贯诊疗方案是有效临床方案形成的重要课题。 考虑到实际可行性和研究代价的问题,在未有明确的有效干预方案形成的临床研究初期,无外部对照的传统中医经验整理和归纳普遍存在,且长期的中医学实践表明是有效的。但由于临床诊疗信息关系的复杂性,基于传统经验整理方式形成有效治疗方案是一个较为漫长的过程。 因此,如何借助源自真实世界(无外部对照)的大规模临床观察数据,进行挖掘分析,以辅助发现和确认较优的临床治疗方案成为辨证论治临床评价研究的关键问题之一。我们采用部分可观察马尔可夫决策过程模型(POMDP)对此问题进行研究,实现了基于POMDP的中医临床处方优化分析方法,以探寻从来自临床实际的大规模观察性临床数据中发现较优或最优的动态序贯治疗方案,为中医辨证论治有效动态干预方案的形成和临床验证提供参考知识。   中医临床诊疗过程对应的POMDP模型 1.  成果的推广应用 本成果已经在国家科技重大专项:重大传染病防治、重大新药创制等两个项目;国家科技支撑计划项目-名老中医经验传承研究;北京市科技攻关项目和国家中医临床研究基地等项目中进行推广应用。分别对艾滋病、肝炎和肺结核等传染病的中医药防治规律,从中医临床中分析确认有效处方与药物,名老中医的辨证论治个体诊疗经验,中风、冠心病和糖尿病等重大慢性疾病的临床诊治规律,以及全国10余家重点中医院诊疗优势病种(如上海龙华医院的中医胃癌治疗、骨关节病治疗;河南中医学院一附院的中医艾滋病治疗、中医慢性阻塞性肺炎治疗等)的临床诊疗优化方案等进行应用研究。逐步探索和完善中医临床科研一体化技术体系,支持基于临床诊疗实践及其真实世界诊疗数据,进行中医临床研究和中药新药创制研究的医学模式。   北京地区22家单位应用分布图
北京交通大学 2021-04-13
大数据交易应当重视和研究的几个问题
《大数据交易应当重视和研究的几个问题》指出,为了保证交易数据来源的正当性和交易主体的合法性,为了有效克服大数据交易中的问题和风险,对于数据这种新型特殊财产的权属、开发利用及流转的特殊规律应当抓紧研究,相关制度建设要及时跟进。该报告建议从两方面入手:一是从私法角度明确数据的财产性质及其权属分配规则。在充分保护人格权和商业秘密的基础上,将数据产权按价值贡献在被采集者、采集者以及数据加工者等相关主体之间进行合理分配。二是从公法角度明确关于数据采集、加工,大数据产品的开发、流转等的监管规范。要明确数据的采集和利用不得违背公认的社会道德和善良风俗;在不损害相关主体的合法权益和公共利益的前提下,推动政府数据公开共享;禁止有可能威胁国家安全的跨境数据流动。
中央财经大学 2021-02-01
中国区域高分辨率气象驱动数据集
清华大学地球系统科学系阳坤教授课题组在《科学数据》(Scientific Data)上发表题为“The first high-resolution meteorological forcing dataset for land process studies over China”的研究成果,发布了过去十年间阳坤团队开发的一套服务于陆面、水文、生态等地表过程模型的中国高时空分辨率气象数据集。该数据采用严格的数据质量控制,统一的站点数据、卫星数据和再分析数据的融合方法,避免了不同学者对同一研究区域气象数据的重复处理。近地面气象数据是地表模型的主要驱动。自2004年美国国家航空航天局(NASA)发布全球陆面数据同化(GLDAS)气象数据以来,北美、欧洲等区域高分辨率气象驱动数据集也不断涌现。阳坤教授团队自2008年起利用中国气象局数据共享的契机,开始了中国区域高分辨率气象驱动数据集的开发,建立了气象数据的预处理系统和融合系统,完成了首套相对稳定可靠的长时间序列数据产品。该数据集覆盖了中国陆地区域,时间跨度为40年(1979-2018),空间分辨率0.1度,时间分辨率3小时,包括了近地面气温、气压、比湿、全风速、向下短波辐射通量、向下长波辐射通量、降水率等 7 个变量。基于独立站点数据的评估表明,该数据集较国际上广泛使用的 GLDAS 数据集具有更高精度。目前,该中国区域高分辨率气象驱动数据集已发布在国家青藏高原科学数据中心,可免费获取。原文链接:https://www.nature.com/articles/s41597-020-0369-y数据网址:https://doi.org/10.11888/AtmosphericPhysics.tpe.249369.file
清华大学 2021-04-10
新冠病毒大数据交叉学科研究平台
日前,国防科技大学系统工程学院大数据与复杂网络研究团队同四川大学、电子科技大学一起,组建新冠病毒大数据交叉学科研究平台,助力新型流行病研究和防控,给多个省份和国家有关部委等提供了8份数据分析报告和决策建议报告,为防控和战胜疫情贡献出了科学智慧。国防科技大学系统工程学院大数据与复杂网络研究团队基于新冠病毒大数据交叉学科研究平台,利用海量多源异构大数据,结合疫情发生发展规律,对人群流动及传播风险进行了综合建模和分析,为政府决策提供了参考依据。特别是团队通过分析春运期间人口流动大数据,建立起疾病传播模型,测算出了疫情扩散蔓延阶段武汉市向全国各地区的输出人口状况和新冠病毒感染的风险指数。还有许多研究人员尝试通过客运数据,研判各个地区及城市的感染风险。也有学者采用“百度迁移”所提供的人口流动数据,通过春运期间从武汉流向全国各省市的人口规模(不包含港澳台数据)和全国感染病毒人数的可视化分布,直观解读两者间的联系。同时加以推断,武汉封城之后,二次传染所造成的病毒传播将日趋占主导地位,传播程度和各省市的人口密度以及管控措施等密切相关。
电子科技大学 2021-04-10
基于138名新冠肺炎病人临床数据的研究
这项研究收集了2020年1月1日至1月28日期间,中南医院收治的138名新冠肺炎病例数据,其中40名(29%)医护人员和17名(12.3%)住院病人受到院内交叉感染。受感染的医护人员中,31人在普通病房工作,7人在急诊部门,2人在重症监护室。 武汉中南医院的这项单中心病例分析成果,清楚阐释了新冠肺炎的临床特征和治疗经验,为抗“疫”阻击战取得进一步胜利打下坚实基础。同时,研究证明“超级传播者”存在的可能性和病毒不可小觑的侵袭力,全员警戒一刻不容松懈,尤其要求一线的医护战士得到最严格的防护武装。
武汉大学 2021-04-10
玻璃与混凝土火灾现场痕迹图谱数据库
火灾事故调查是是一项技术性、政策性、规范性、法律性和时效性都很强的工作。由于火灾现场的千差万别,火灾调查这一专业执法工作所涉及的知识面特别广泛,在现场勘查过程中遇到的专业问题又相互交织在一起,加之建筑新材料、新工艺、新技术、新产品的不断涌现,使得火灾现场典型痕迹的发现和识别显得尤为重要。本课题选题从消防部队实际需求出发,以实际火灾现场中的痕迹为主要研究对象,收集提炼玻璃和混凝土等常见材料在火场高温条件下的痕迹特征,以解读痕迹形成的过程和规律,为火灾调查工作的开展提供有力支撑。
中国人民警察大学 2021-05-03
基于AI技术的通用网关及数据管理平台
本项目研发了一套完整的现场数据采集服务支撑技术,提供了数据采集集成服务的商业运营新模式。针对工业互联网建设过程中普遍存在的现场数据采集需求,整合了综合感知、AI智能处理、网络安全传输、数据质量管理和标准化输出等多个环节,把经过质量分析和标准化处理后的实时数据,作为产品对接到工业互联网应用平台的数据池,供后续数据处理和应用分析。整套技术包括4大模块:1)智能网关:基于具有AI能力CPU的智能网关,完成对多种传感信息的有效采集,并安全传输给数据前置云服务器;重点研究基于小目标的AI图像分类算法。2)AI模型管理系统:实现对智能网关中视觉AI感知中的模型计算和管理,该系统可以统一部署也可以部署的用户指定的内网服务器中。3)数据管理和标准化处理:数据有效性管理、数据质量评估、数据标准化和数据安全机制。4)智能运维:开发一套基于移动APP的智能运维系统,为运维人员提供有效帮助,提高效率、降低成本、保证系统运行质量和数据的有效性。 如图所示,项目完成了对于现场数据的传感、传输、管理、输出和设备运维等一系列工程实现。应用范围: 1、智能网关: 开发基于具有AI能力CPU的智能网关,完成对多种传感信息的有效采集,并安全传输给数据前置服务器。 综合接入能力: 包括有线传感器和特定的无线传感器、与现有系统的对接 有效感知能力: 实现基于图像的AI视觉感知能力,重点研究基于小目标的图像分类算法 安全传输能力: 提供4G、5G、NB-IOT的上行传输模块化替换 提供安全的加密手段,保证数据安全 现场调试配置能力: 具有现场WiFi调试功能,方便安装和运维人员现场配置和检测 软件和通信标准版本现场升级 2、AI模型管理系统 需要实现对智能网关中视觉AI感知中的模型计算和管理,该系统可以统一部署也可以部署的用户指定的内网服务器中。 样本管理能力 原始样本管理、样本实例库分类和管理、检测样本管理等 模型计算和管理 算力管理:对算力的统筹,外部算力的对接等 算法管理:自主开发算法的管理和调动,外部算法的调用和对接 模型管理:包括模型的功能属性和已经应用的情况的统计分析 设备管理 设备的AI模型配置能力、AI推演过程的监控、AI推演结果的跟踪采集和分析 3、数据管理和标准化处理 数据有效性管理 监测数据是否按时上传、上传数据是否符合要求、是否为非法数据 告警输出:把告警信息进行分类,并推送给相关的运维系统 数据质量评估 按照标准对现场采集数据进行多维度的质量分析,为后续数据应用提供参考依据 数据标准化 格式标准化:完善采集时间、地点、单位等属性, 输出标准化:按照标准协议与工业互联网平台数据池进行对接 数据安全 区域性部署:可以应用户要求部署在其内网 并行部署:可以通过并行部署,网关上联多个服务器,确保用户的可靠性需求 数据回滚能力:可以应工业互联网平台要求对数据进行一定期限内的回滚,保证数据在一定时间段内不丢失 4、智能运维 开发一套基于移动APP的智能运维系统,为运维人员提供有效帮助,提供效率、降低人员成本、保证系统运行质量和数据的有效性。 运维人员管理 对运维人员的信息、定位、工作状况管理 巡检任务管理 对部署的硬件和相关工作环境定期巡查的任务制定、下发、执行过程和结果的记录和管理 临时故障处理 对系统自动告警和现场突发状况的应急处理能力,包括人员调配、处理流程提示和建议、相关情况处置参考案例、后续统计追踪等。网关核心板实物照片
北京邮电大学 2021-04-10
分层检测空移键控传输系统接收端数据检测
包括以下步骤:第一步、确立接收端模型;第二步、化简接收端模型;第三步、通过分层检测算法解调出发送的数据。本发明的基于分层检测的空移键控传输系统接收端数据检测方法,其误码(BER)性能随着搜索半径的增加逐渐逼近最优检测算法(ML),当搜索半径为发送端天线数目时,本发明的检测算法等价于最大似然检测算法。本算法通过对每层进行计算排序使得在较小的搜索半径下可获得接近最优检测算法的误码率性能,因此本发明能在获得较好性能的同时,大幅度降低接收端算法的复杂度。
电子科技大学 2021-04-10
基于大数据的能源互联网能量管理系统
随着电网数据规模越来越大,所蕴含的价值也越来越多。清华大学信研院研发了基于机器学习方法的能源互联网能量管理系统,主要功能为对电网的稳定性进行预测和可视化。系 统分为训练部分和预测部分。训练部分通过历史数据进行机器学习,建立一个电压稳定性的 分类器。分类器训练完成后,再对新增的未知数据进行预测。训练部分主要分为特征提取、 类别标记、特征压缩、分类器类型选择。预测部分主要分为分类器数据启动阶段和预测输出 阶段。本系统提出利用机器学习方法对电网电压稳定性进行预测,进一步综合多个节点给出 电网态势感知的评估结果。在训练每一个节点分类器的时候,本系统将特征选取的时段和预 测时间节点拉开,形成一种延时的预测方法,本发明对复杂系统有着更好的还原效果。2 应用说明本系统实施电压稳定性预测的具体步骤为:步骤 1:通过部署在关键测点的同步相角测量单元 PMU 采集电网实时数据,所述 实时数据包含电网中每个关键测点的电压 U、 有功 P、无功 Q、电流 I;分别计算 U 的衍 生量 dU/dt,Q 的衍生量 dQ/dt,电压的变化 量比上无功的变化量的衍生量 dU/dQ,用这 些衍生量作为特征,来表征量的时间变化速 率;步骤 2:对步骤 1 中提取的特征进行数 据降维与压缩;根据特定时刻电压 U 是否恢 复到标准值的 0.8 倍来区分每组样本组是否 稳定,用 0 标记稳定,用 1 标记不稳定;步骤 3:选择分类器,建立一个电压稳 定性的分类器;步骤 4:训练分类器;当分类器训练完 成后,将训练好的参数储存起来;步骤 5:进入预测部分的数据启动阶段, 填充特征矩阵,没有输出;步骤 6:把多个节点的特征按照顺序排列,形成特征矩阵;特征矩阵填充完成后, 根据分类器给出的预测结果;特征时段向前滑动,最初的特征被抛弃,新特征补充在队尾, 分类器持续给出预测结果;步骤 7:每隔一定时间间隔 ,要把新收集来的数据与以前的数据一起,重新回到步骤 4 训练分类器,更新参数。在具体系统搭建过程中,我们充分利用现有机器学习平台。其中 Hadoop 的文件管理系统 HDFS 负责数据存储;Spark 负责模型训练;Storm 负责在线预测;Kafka 负责在 Storm 和Hadoop 之间传递更新后的模型参数。
清华大学 2021-04-11
首页 上一页 1 2
  • ...
  • 24 25 26
  • ...
  • 56 57 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1