高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
数控机床
产品详细介绍     CAK1635v CAK3275v CAK3675v CAK3635v CAK40100v CAK40100vl 床身上最大回转直径 mm φ160 φ320 φ360 φ360 φ400 φ400 滑板上最大回转直径 mm φ140 φ180 φ180 φ180 φ200 φ200 滑板上最大切削直径 mm φ140 φ180 φ180 φ180 φ200 φ200 最大加工长度 mm 260 四工位650 六工位580 四工位650 六工位580 四工位240 四工位850 六工位750 四工位850 六工位750 主轴通孔直径 mm φ43 φ53 φ53 φ53 φ53 φ53 主轴头型式   A2-4 A2-6 A2-6 A2-6 A1-6 A1-6 主电机功率(变频) kW 4 5.5 5.5 5.5 5.5 7.5 主轴转速 r/min 500-5000 (手卡4000) 200-3000 (手卡2000) 200-3000 (手卡2000) 200-3000 (手卡2000) 150-2000手动Ⅲ档+变频 Ⅰ150-520 Ⅱ440-1150 Ⅲ770-2000 150-2400 (手卡2000) 尾台套筒直径   可选配手动 或液压尾台 φ60 φ60 可选配手动 或液压尾台 φ60 φ60 尾台套筒行程   可选配手动 或液压尾台 140 140 可选配手动 或液压尾台 140 140 尾台套筒锥孔   可选配手动 或液压尾台 莫式4号 莫氏4号 可选配手动 或液压尾台 莫氏4号 莫氏4号 X轴最大行程 mm 120 220 220 220 220 220 Z轴最大行程 mm 260 660 660 260 1000 1000 快移速度(X/Z轴) m/min 6/12 6/12 3.8/7.8 3.8/7.8 3.8/7.8 3.8/7.6 刀架刀位数   4 4 4 4 4 4 刀具安装尺寸 mm 16×16 20×20 20×20 20×20 20×20 20×20 X/Z轴重复定位精度   0.007/0.008 0.007/0.01 0.007/0.001 0.007/0.01 0.007/0.01 0.007/0.01 加工精度   IT6 IT6-IT7 IT6-IT7 IT6-IT7 IT6-IT7 IT6-IT7 机床外形尺寸(长×宽×高) mm 1780×1230 ×1760 2190×1400 ×1610 2180×1230 ×1700 1780×1230 ×1700 2490×1360 ×1510 2490×1360 ×1510 机床净重/毛重 kg 1450/1690 1810/2060 1800/2010 1555/1790 1990/2290 1990/2290 包装箱尺寸(长×宽×高) mm 2150×1660 ×2050 2520×1660 ×2050 2520×1660 ×2050 2150×1660 ×2050 2770×1660 ×2050 2770×1660 2050    
安徽力威数控机床有限公司 2021-08-23
难加工材料的高效特种切削加工技术
Ø  成果简介:具有对新型高硬超高强度钢、不锈钢、新型复合材料、钨合金、硅铝合金和灰铸铁的精密高效切削工艺和刀具成套技术。开发了能对FMS的刀具管理和可靠性寿命进行预报,对金刚石涂层刀具薄膜与基体结合强度、新型刀具材料切削性能进行分析的系统软件以及高速孔加工刀具CAD软件系统。切削高硬超高强钢的速度可达150m/min,切削不锈钢的速度可达200m/min,提高生产效率30%。Ø  项目来源:自行开发Ø  技术领
北京理工大学 2021-01-12
巴索切削液浓缩分离,清水回用
上海理工大学 2021-01-12
难加工材料的高效特种切削加工技术
具有对新型高硬超高强度钢、不锈钢、新型复合材料、钨合金、硅铝合金和灰铸铁的精密高效切削工艺和刀具成套技术;开发有对FMS的刀具管理和可靠性寿命预报、金刚石涂层刀具薄膜与基体结合强度、新型刀具材料切削性能分析的系统软件;高速孔加工刀具CAD软件系统。切削高硬超高强钢的速度可达150m/min,切削不锈钢的速度可达200m/min。提高生产效率30%。
北京理工大学 2021-04-13
高强耐蚀易切削无铅环保黄铜材料
该技术以 Si、Al 替代 Pb,研制出新型无铅环保硅黄铜合金,优选出合适的低压铸造工艺参数,并开展产品设计,成功制备了新一代环保黄铜水龙头,实现了黄铜制品的“无铅化”,解决了现有的黄铜材料制备工艺复杂、降铅与切削性能难以兼顾等技术难题。本团队制备的环保黄铜水龙头完全“零铅”,析 Pb 量远小于 5μg/L 的相关标准限值,与常用的 HPb59-1 水龙头相比,其拉伸 强度提高 48.8%、延伸率提高 66.7%、综合切削性能提高 7.5%、 耐蚀性能提高 63.6%、良品率高达 85%、制造成本降低 25%以上,整体技术指标达国际先进水平,完全可取代进口产品。 
华南理工大学 2023-05-09
可切削加工的纳米复相陶瓷材料
陶瓷材料具有耐高温、抗氧化、耐腐蚀、电绝缘等一系列优点。但是,其质地脆硬,难以机械切削加工。利用纳米复合技术,在氧化铝、碳化硅、氮化硅等陶瓷基体中,原位添加形成纳米可切削相,制备出纳米复相可加工陶瓷,能够用普通刀具车削、铣削、钻孔,制造形状复杂、尺寸精密的陶瓷部件。 近年来,在国家863项目支持下,本课题组致力于高性能可加工陶瓷材料的研发工作,采用湿化学方法,结合热压或常压烧结,制备出多种可加工陶瓷材料及部件,保持了陶瓷材材的耐高温、抗氧化、耐腐蚀和电绝缘性能,同时,能够机械加工出复
江苏大学 2021-04-14
可切削加工的纳米复相陶瓷材料
项目简介陶瓷材料具有耐高温、抗氧化、耐腐蚀、电绝缘等一系列优点。但是,其质地脆硬,难以机械切削加工。利用纳米复合技术,在氧化铝、碳化硅、氮化硅等陶瓷基体中,原位添加形成纳米可切削相,制备出纳米复相可加工陶瓷,能够用普通刀具车削、铣削、钻孔,制造形状复杂、尺寸精密的陶瓷部件。近年来,在国家 863 项目支持下,本课题组致力于高性能可加工陶瓷材料的研发工作,采用湿化学方法,结合热压或常压烧结,制备出多种可加工陶瓷材料及部件,保持了陶瓷材材的耐高温、抗氧化、耐腐蚀和电绝缘性能,
江苏大学 2021-04-14
中央教育工作领导小组印发《高等教育学科专业设置调整优化行动方案(2025—2027年)》
对深入推进学科专业设置调整优化工作作出系统部署。
教育部 2025-08-29
城市交通信号控制和优化系统
研究了中心控制和优化软件。结合用户的需求和比较现有软件,开发了灯组定义、相位定义、相位序列定义、相位配时模块。信号机直接以以太网连网,通讯模块负责接收信号机的各项参数,并发送指定的相应数据。进行了配时优化研究。在优化时采用固定周期的方法,相位的绿信比作为优化变量进行优化。
东南大学 2025-02-08
一种人参冻干工艺的优化技术
人参作为传统中药材,早在《神农本草经》中就被列为上品,具有“补中益气,养血安神,强壮体魄”的功效,长期以来在中医药中占据着重要地位,尤其在提升体力、增强免疫力等方面有显著作用。 随着现代技术的发展,冻干技术的应用为人参加工带来了革命性变化。通过低温和真空环境下的升华原理,冻干技术能够去除新鲜人参中的水分,最大限度保留其活性成分、营养物质和药效。这不仅延长了产品的保质期,还改善了产品的便捷性,便于储存和运输,适应了现代消费者的需求。 本项目专注于人参冻干技术的研发,旨在提高人参产品的质量与市场竞争力。冻干后的产品不仅保留了原有的药效和营养成分,还具有更长的保质期,能够广泛应用于人参粉、营养补充品、保健食品等多个领域。同时,项目优化了冻干工艺,提升了有效成分的提取率,确保最终产品在营养和药效上的最大保留。 通过技术创新与产业化应用,本项目将推动人参产业的现代化发展,提升人参附加值,满足国内外市场对高品质人参产品日益增长的需求,为行业带来更多发展机遇。 1. 目标市场与市场规模: 本项目主要面向国内外高端健康食品、保健品和营养补充品市场,重点关注中老年人、亚健康人群及健身爱好者。随着生活水平提高,年轻消费者也逐渐关注天然、绿色健康产品,冻干人参成为理想选择。全球人参市场年增长率约为5%-7%,冻干人参的潜力尤为巨大,特别是在高端健康领域。 2. 市场竞争预测: 目前,国内外已有企业涉足人参冻干技术,但大多数仍处于初步阶段,技术尚不成熟,且现有产品集中于中低端市场,冻干工艺不够精细,导致有效成分损失较大。竞争者包括传统人参生产商和新兴健康品牌。随着消费者对品质要求提升,市场将向高品质、高效能产品倾斜。本项目的冻干技术创新和产品高端化,使其具备强大竞争力,有望迅速占领高端市场份额。 3. 本项目核心竞争优势: 本项目的核心竞争优势在于冻干技术创新。相比传统工艺,项目技术能更好保留人参中的有效成分,提高营养价值和药效。产品形态多样(如粉末、颗粒、薄片等),满足不同消费者需求,提供便捷使用体验。项目在原材料采购、生产环节和质量控制上的优势,确保产品的高品质和稳定性。随着市场对高品质健康产品需求增长,本项目具备较强的技术壁垒和市场竞争力。
延边大学 2025-05-19
首页 上一页 1 2
  • ...
  • 5 6 7
  • ...
  • 89 90 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1