高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
西北农林科技大学-校企合作共建实验实训新基地
西北农林科技大学与杨凌步长制药有限公司共建实验实训新基地。
西北农林科技大学 2022-08-19
夯实数字化教育新基建 培养机械类新工科人才
围绕立德树人根本任务,传承“工学并举”办学特色,河北工业大学机械设计制造及其自动化专业以国家级专业综合改革试点为契机,协同车辆工程、机械电子工程和测控技术与仪器专业,面向高端制造业的数字化、信息化和智能化人才需求,不断夯实数字化教育新基建,创新数字化产教融合培养新模式,打造信息化泛在式人才培养新高地,探索线上线下混合式实践教学新途径,开辟螺旋迭代式一二课堂协同育人新体系,树立两段三层递进式创新教育品牌,从而升华“工学并举”新的时代内涵,培养具有制造强国热情、扎实工程实践能力、平视世界专业信心的机械类新工科创新人才。
河北工业大学 2022-12-08
一种新的产生暗物质和希格斯的理论机制
一种基于真空非对齐的新的暗物质非热产生机制,这一机制可以适用于包括复合希格斯在内的一大类模型。真空非对齐是对称性自发破缺的一种方式,如图1(a)所示。我们以一个简化的复合希格斯模型为特例阐述了机制的运作方式。在高温时,电弱真空随手征对称性破缺而发生大的破缺,真空非对齐角在一段时间内维持在90度,即对应于一个无希格斯粒子(Higgsless)的真空。此时希格斯场会与模型中其它的赝南部-戈德斯通玻色子组合成一个质量复标量场,假定这个复标量可以携带一个新的U(1)对称性的非零荷,则它在这个真空中不会完全衰变为标准模型的粒子。如果模型中还有一些暗物质粒子也带有这个U(1)对称性的荷,那么希格斯场在这个真空中与暗物质受到相同对称性保护,同属于所谓的暗的部分。如果引入的新的U(1)对称性是电弱反常的,则在发生电弱相变时可通过sphaleron不对称地产生正反暗物质,之后正反暗物质会互相湮灭,直到反物质(或正物质)被全部湮灭,而最终残留的部分就可作为宇宙的暗物质遗迹。在我们的理论机制中,暗物质遗迹的不对称产生是在无希格斯真空下发生的,但随着温度的降低,真空非对齐角会开始变小并最终演化为今天的标准模型真空,真空非对齐角随温度的变化参见图1(b),而暗的U(1)对称性也随之发生自发破缺。在真空非对齐角开始偏离90度时,希格斯粒子开始从暗的部分中分离出来,也就是说希格斯粒子有可能在较高温度时曾经属于暗的一部分,但在温度降低后从暗的部分中演生出来,成为一个不稳定的实标量粒子。另一方面,还有一些复合暗物质粒子因为受到一个Z_2对称性的保护而不会完全衰变为标准模型粒子,它们虽然在无希格斯真空下是复标量场,但在标准模型真空下却会劈裂为两个有质量差别的实标量场,于是通过Z规范玻色子与原子核散射的过程被运动学禁戒,从而不会受到很强的直接探测限制。我们的理论机制预言,总会存在一个轻的赝标量粒子,这对暗物质直接探测如Xenon1T实验、宇宙学观测、超新星观测以及在对撞机实验中探测“Z规范玻色子衰变到光子及这个赝标量粒子”过程等结果都有深远的影响,从而可以得到检验。
中山大学 2021-04-13
夯实数字化教育新基建 培养机械类新工科人才
围绕立德树人根本任务,传承“工学并举”办学特色,河北工业大学机械设计制造及其自动化专业以国家级专业综合改革试点为契机,协同车辆工程、机械电子工程和测控技术与仪器专业,面向高端制造业的数字化、信息化和智能化人才需求,不断夯实数字化教育新基建,创新数字化产教融合培养新模式,打造信息化泛在式人才培养新高地,探索线上线下混合式实践教学新途径,开辟螺旋迭代式一二课堂协同育人新体系,树立两段三层递进式创新教育品牌,从而升华“工学并举”新的时代内涵,培养具有制造强国热情、扎实工程实践能力、平视世界专业信心的机械类新工科创新人才。
河北工业大学 2023-03-14
一种新的合成含吡啶类化合物的方法
本发明公布了一种含吡啶单元的化合物的合成方法,以硝基取代的苯乙酸,甲基吡啶或甲基喹啉为反应物,CuBr为催化剂,反应温度为120℃,氧气氛围下反应24-36小时。反应完毕,对反应液进行萃取,合并有机相,柱色谱分离,获得含吡啶单元的产物。本发明制备方法用羧酸类化合物代替传统的醛类化合物参与反应,具有很好的应用前景。
青岛农业大学 2021-04-13
新修订的《上海市科学技术进步条例》全文公布
为了全面促进科学技术进步,发挥科学技术第一生产力、创新第一动力、人才第一资源的作用,加快建设具有全球影响力的科技创新中心,推动科技创新支撑和引领经济社会发展,根据《中华人民共和国科学技术进步法》等法律、行政法规,结合本市实际,制定本条例。
上海人大 2024-05-16
用于哮喘—气道高反应性疾病治疗的CD38酶抑制剂
项目简介 目前临床上抗哮喘用药主要包括糖皮质激素类药物与β2受体激动剂(例如盐酸丙卡特罗(美普清)),但这两类药物存在较大的副作用。糖皮质激素类药物可引起水、盐、糖、蛋白质及脂肪代谢紊乱;减弱机体抵抗力,阻碍组织修复,延缓组织愈合;抑制儿童生长发育。β2受体激动剂可引起心律失常、肌肉震颤、水盐代谢紊乱。临床急需疗效确切、副作用小的新药。 气道高反应性是指气管、支气管本身对各种刺激,包括特异性抗原刺激和非特异性刺激,如物理、化学刺激,呈现过度反应,是支气管哮喘病人区别于正常人的重要特征。CD38分子表达与分布在气道平滑肌等。通过CD38分子的酶催化作用生成的环腺苷二磷酸核糖(cyclic adenosine diphosphate ribose, cADPR)来调节细胞内Ca2+的释放而调节细胞收缩。气道平滑肌的收缩能力主要依靠于平滑肌细胞内Ca2+的浓度,CD38分子可以调节细胞内Ca2+的浓度进而影响气道平滑肌的收缩,在哮喘的发病机制中起到非常重要的作用。图1.T化合物的化学结构   本项目重点研究了两种小分子CD38抑制剂,其中一种化合物即5-(3-苯基丙酰氨基)-N-(4-乙氧羰基苯基)-1H-3-吲哚甲酰胺(T化合物分子式见图1)治疗能够减轻臭氧攻击所造成气道与肺泡病理改变,炎症反应、氧化损伤及气道高反应,且无明显血液毒性与全身性毒副作用。该化合物作为CD38酶抑制剂,可通过抑制Ca2+释放舒张气管平滑肌,对症治疗气道高反应性疾病;我们利用臭氧制作小鼠气道高反应模型,同时给予该化合物的乳化剂灌胃治疗,发现经该化合物治疗的小鼠气道阻力明显降低(见表1)、动态肺顺应性明显增加、肺病变程度减轻(见图2)。  应用范围 流行病学结果表明,中国有大约3000万哮喘病人。其中,儿童哮喘发病率约1.5%,成人发病率约1.24%。由于哮喘发病率不断地增高,预计在未来15-20年内患者总人数将增至4亿人。T化合物可以有效治疗哮喘病人气道高反应症状、副作用小,具有良好的药物开发前景,我国每年有超过3000万人出现哮喘发病,假设仅仅5%的病人(150万)接受5000元的抗哮喘治疗,则年销售额可望达到75亿元。 表1 *P<0.05 vs 正常对照组   # P<0.05 vs 模型组项目阶段 本项目处于临床前阶段。化合物合成路线合理,产率高。适合产业化。我们的研究发现,5-(3-苯基丙酰氨基)-N-(4-乙氧羰基苯基)-1H-3-吲哚甲酰胺除了能通过抑制CD38酶活性,扩张气管平滑肌对症治疗气道高反应性疾病之外,还具有抗炎、抗氧化作用,未发现明显毒副作用。   图2.各组小鼠肺组织病理切片HE染色图左上,正常对照组;中上,模型组;右上,阳性药1激素组;左下,阳性药2美普清组;中下,H化合物组;右下,T化合物组知识产权 已经获得发明专利授权。合作方式 技术转让。
北京大学 2021-04-11
可注射干细胞 3D 微组织治疗实现微创高效再生医学
以组织工程和干细胞治疗为代表的再生医学是现代医学最具发展潜力的领域,有望成为继药物和器械治疗之后下一个医疗健康行业的支柱产业。再生医学已在临床成功地用于皮肤再生,关节软骨重建,肌腱、脊髓损伤修复,免疫系统功能重建等,并在治疗疑难病症(如遗传性疾病和心血管类疾病)和各类器官组织(如神经、肝脏、心脏、胰腺等)修复和再生的动物模型和临床试验中显示出良好效果。3D 微组织疗法目前在科研领域内,也在大动物(犬)椎间盘蜕变、小动物(鼠)皮肤损伤及小动物(鼠)肝衰竭等模型中得到有力验证。这种可注射3D 微组织平台技术可辅助各种类型的细胞治疗和组织 再生,有望像药物传递对于药物治疗一样在细胞治疗领域产生广泛而重大的影响。其潜在市场主要是各大 医院和医疗机构,将成为未来治疗重大疑难疾病的利器。
清华大学 2021-04-11
用于哮喘—气道高反应性疾病治疗的CD38酶抑制剂
目前临床上抗哮喘用药主要包括糖皮质激素类药物与β2受体激动剂(例如盐酸丙卡特罗(美普清)),但这两类药物存在较大的副作用。糖皮质激素类药物可引起水、盐、糖、蛋白质及脂肪代谢紊乱;减弱机体抵抗力,阻碍组织修复,延缓组织愈合;抑制儿童生长发育。β2受体激动剂可引起心律失常、肌肉震颤、水盐代谢紊乱。临床急需疗效确切、副作用小的新药。 气道高反应性是指气管、支气管本身对各种刺激,包括特异性抗原刺激和非特异性刺激,如物理、化学刺激,呈现过度反应,是支气管哮喘病人区别于正常人的重要特征。CD38分子表达与分布在气道平滑肌等。通过CD38分子的酶催化作用生成的环腺苷二磷酸核糖(cyclic adenosine diphosphate ribose, cADPR)来调节细胞内Ca2+的释放而调节细胞收缩。气道平滑肌的收缩能力主要依靠于平滑肌细胞内Ca2+的浓度,CD38分子可以调节细胞内Ca2+的浓度进而影响气道平滑肌的收缩,在哮喘的发病机制中起到非常重要的作用。 本项目重点研究了两种小分子CD38抑制剂,其中一种化合物即5-(3-苯基丙酰氨基)-N-(4-乙氧羰基苯基)-1H-3-吲哚甲酰胺(T化合物分子式见图1)治疗能够减轻臭氧攻击所造成气道与肺泡病理改变,炎症反应、氧化损伤及气道高反应,且无明显血液毒性与全身性毒副作用。该化合物作为CD38酶抑制剂,可通过抑制Ca2+释放舒张气管平滑肌,对症治疗气道高反应性疾病;我们利用臭氧制作小鼠气道高反应模型,同时给予该化合物的乳化剂灌胃治疗,发现经该化合物治疗的小鼠气道阻力明显降低(见表1)、动态肺顺应性明显增加、肺病变程度减轻(见图2)。
北京大学 2021-02-01
1-脱野尻霉素在制备治疗糖尿病肾病药物中的应用
糖尿病肾病是糖尿病最常见、最严重的慢性并发症之一,在我国发病率呈上升趋势, 因此迫切需要深入阐明其发病机制,丰富和完善防治措施。 1-脱野尻霉素是一种哌啶类多羟基生物碱,能够竞争性抑制肠道α-糖苷酶的活性, 应用于糖尿病餐后血糖的升高;还可以进入体内,发挥抑制病毒复制中糖链合成、糖蛋 白中糖基的修饰等功能。对 1-脱野尻霉素及其衍生物的研究为创立临床治疗新方法、新 药开发提供了新的方向。 本发明提供了 1-脱野尻霉素在制备糖尿病肾病药物中的应用,提供了一种有效的组 合药物。通过实验,发现 1-脱野尻霉素对于高糖培养大鼠系膜细胞增值的抑制作用、抑 制系膜细胞α-平滑肌动蛋白表达的升高、系膜细胞 TGFβ1,整合素β1mRNA 表达的影 响,充分验证了 1-脱野尻霉素对于糖尿病肾病的治疗作用。二、应用领域 本发明的药物组合物可直接用于糖尿病肾病的治疗,也可与其它药剂同时使用治疗。 本发明的药物组合物含有安全效量的 1-脱野尻霉素以及药学上可以接受的载体与 赋形剂,配制成适合给药与糖尿病肾病患者的方式。
同济大学 2021-04-13
首页 上一页 1 2
  • ...
  • 74 75 76
  • ...
  • 95 96 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1