高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
新型水下防爆结构
本实用新型公开了一种新型水下防爆结构,包括从上到下依次设置的柔性缓冲层、反射面板、消能 层,其中,柔性缓冲层包括弹性板和内嵌于弹性板中的第一波纹状钢板;反射面板由硬质材料制成;消 能层由装满细砂的封装壳构成,第二波纹状钢板嵌入细砂中。本实用新型装置适用于水下防爆,将反射 消能与变形消能巧妙的结合在一起,消能防爆效果大幅提高;采用泡沫,钢板,细砂等材料,价格便宜 且材料易得;利用水下爆炸的特性,采用
武汉大学 2021-04-14
新型基因编辑技术
该技术可利用人体自身存在的机制进行RNA的单碱基编辑,避免了任何由于表达外源效应蛋白而引起的潜在问题。 新型基因编辑技术(魏文胜团队)   LEAPER (Leveraging Endogenous ADAR for Programmable Editing on RNA)是一类具有我国自主知识产权的新型基因编辑技术,该技术可利用人体自身存在的机制进行RNA的单碱基编辑,避免了任何由于表达外源效应蛋白而引起的潜在问题。LEAPER技术具有高精度、易于递送、长时效、高安全性等多种优点,并在包括遗传性疾病治疗方面展现出了可观的优势及潜能,成功为生命科学基础研究和疾病治疗提供了一种全新的工具。    LEAPER技术原理   近年来,以CRISPR/Cas9为代表的基因组编辑技术在生物医学等诸多领域产生了深远的影响,但存在的一系列问题使该技术在临床治疗应用中遭遇瓶颈。根源之一在于当前的基因编辑体系依赖于外源编辑酶或效应蛋白的表达,从而造成 (1) 蛋白分子量过大使得通过病毒载体进行装载及人体内递送十分困难;(2) 由蛋白过表达引起的DNA/RNA水平的脱靶效应;(3) 由外源蛋白表达引起的机体免疫反应及损伤;(4) 机体内的预存抗体使外源编辑酶或效应蛋白被中和从而导致基因编辑失败等。   为解决上述问题,摆脱传统技术依赖于外源蛋白表达的桎梏,2019年魏文胜团队建立了具有我国自主知识产权的名为LEAPER的新型基因编辑技术。与RNAi类似,LEAPER充分利用了细胞中天然存在的机制:仅用一条RNA 就实现了精确高效的RNA单碱基编辑,从而避免了任何由于表达外源效应蛋白而引起的各种潜在问题。研究人员利用LEAPER成功修复了来源于Hurler综合征病人的缺陷细胞,为未来相关疾病的治疗奠定基础。此外,LEAPER还有希望衍生出多种延展型技术,为生物医学等研究提供新型工具。
北京大学 2022-08-12
新型智能透光材料
该类材料实现了系列突破: 1. 价格便宜,采用的元素是原来传统采用的银材料的 1/60; 2. 制备工艺先进、能耗低、产量大,便于大规模生产; 3. 变色能力优越,能从完全无色透明转换到近黑色, 实现高度可逆性,并能阻断 80%以上的紫外光。 
中国科学技术大学 2023-05-17
新型人工关节
本成果面向国家/地方植入医疗器械的重大战略需求,紧跟国际研究前沿, 围绕生物材料生物功能性及植入体药械结合的研发主线,基于细胞外微环境原理, 探究生物材料界面微环境特征如何调控骨/骨关节修复的核心科学问题,系统地 研究生物材料界面微环境特征与细施相互作用规律及分子机制,提供生物材料表 面功能化关键技术,最终为骨/骨关节修复提供新材料。 植入体与宿主的生物反应首先发生在材料界面,诱发细胞粘附到组织形成的 生物级联反应。如何构建生物功能性界面并赋予植入体主动刺激细胞/组织功能 的性能,提高其使用寿命,是医疗器械研发关键科学问题之一。本项目创建生物 功能性界面与骨髓基质干细施双向“交流"调控的理论假说。利用双酸腐蚀及阳 极氧化等技术制备系列钛基多尺度微米、微/纳米、纳米结构,揭示微/纳米结构〉 纳米结构〉微米结构的生物学响应规律。率先将层层组装技术(LBL)技术引入到钛 基生物材料界面工程,获专利授权。进而,利用LBL技术构建生物因子插层多层 结构,调控骨髓间充质干细胞的分化,并促进植入体的骨整合性。首次在钛材表 面构建“三明治”界面结构,调控成骨细施/破骨细施动态生长平衡,开发出具有骨质疏松治疗功效的钛基新型植入器械。
重庆大学 2021-04-11
新型体育教学器材
产品详细介绍
武汉天力体育科技发展有限公司 2021-08-23
新型多媒体教室
新型多媒体教室主要适用于常规授课;具有高清显示、无尘书写、课堂签到、随堂测试、投屏、智能控制、常态录播等功能
北京鸿合爱学教育科技有限公司 2022-06-09
教育部部长怀进鹏:支持办好新型研究型大学
2月23日,教育部党组书记、部长怀进鹏赴深圳调研,深入深圳晶泰科技有限公司、深圳市光明科学城、深圳医学科学院、深圳理工大学,了解新技术赋能药物研发、合成生物研究、脑设施应用、医学科技创新、新型研究型大学学科建设等情况,主持召开新型研究型大学调研座谈会。
教育部、微言教育 2025-02-24
长安大学桥梁多功能气候环境模拟试验系统采购项目公开招标公告
长安大学桥梁多功能气候环境模拟试验系统采购项目招标项目的潜在投标人应在电子邮箱(490786920@qq.com)获取招标文件,并于2022年06月22日09点30分(北京时间)前递交投标文件。
长安大学 2022-05-31
高速铁路长大桥梁、高架站无砟轨道无缝线路技术研究
  该项目是国家部委项目,现处于实验室研究阶段。      项目在高速铁路、无砟轨道、无缝线路和无缝道岔等方面的研究基础之上,结合京沪高速铁路对应工点,以长大桥梁无砟轨道无缝线路、高架站无砟轨道无缝道岔为重点研究对象,就高速铁路桥上无砟轨道无缝线路设计理论、检算和评价方法、室内及现场试验、监测和检测技术等展开深入研究。针对高速铁路长大桥梁、高架站无砟轨道无缝线路存在的问题,分以下四个方面内容进行研究: 1)高速铁路长大桥梁无砟轨道无缝线路设计理论及综合试验研究。 2)高速铁路高架站无砟轨道无缝道岔设计理论及综合试验研究。 3)高速铁路长大桥梁、高架站无砟轨道无缝线路检测、监测技术研究。 4)京沪高速铁路长大桥梁、高架站无砟轨道无缝线路检算及评估方法的研究。    该项目技术创新点如下:   (1)建立较为完善的静、动力学分析模型,并采用静、动力结合的方式,研究满足高速铁路桥上无砟轨道无缝线路、无缝道岔需求的分析方法。   (2)创新性地提出桥上无缝线路、无缝道岔各种设计参数的取值依据及主要因素的影响规律。   (3)建立完善的高速铁路长大桥梁无砟轨道无缝线路、高架站无缝道岔的检算和评估体系。   (4)提出高速铁路长大桥梁无砟轨道无缝线路、高架站无砟轨道无缝道岔静、动态测试及长期监测的内容与方法。   (5)掌握高速铁路长大桥梁、高架站无砟轨道无缝线路检算和评估方法,为京沪高速铁路列车的安全、舒适、平稳运行提供保障。 通过本项目的研究,形成一整套适用于我国高速铁路的桥上无砟轨道跨区间无缝线路技术体系。成果在应用于京沪高速铁路长大桥梁、高架站无砟轨道无缝线路的同时,也为其它高速铁路无砟轨道无缝线路的设计、施工及养护维修、检测及监测等提供依据。项目总体研究成果达到国际先进水平,部分成果达到国际领先水平。 本项目所研究和解决的关键技术: (1)无缝线路、无缝道岔、无砟轨道结构与桥梁的静、动力相互作用机理及空间耦合理论模型的建立; (2)桥上无砟轨道无缝线路、无缝道岔力学特性的主要影响因素、影响规律及相关参数的研究; (3)高速铁路长大桥梁无砟轨道无缝线路、高架站无砟轨道无缝道岔的检算、评估指标和方法研究; (4)长大桥梁、高架站无砟轨道无缝线路静、动态试验及长期监测试验测试内容、测点布置及测试方法的研究。    应用范围: 部分成果可编入高速铁路长大桥梁及高架车站无砟轨道无缝线路施工及养护维修技术条件中,并可以推广应用到其它高速铁路建设中,具有显著的技术经济效益和推广价值。    预期效果:    1)确定合理的设计参数,建立完善的静、动力学分析模型,能有效指导高速铁路无缝线路、无缝道岔的设计;    2)制定的室内、现场静、动态试验方案,能有效地测定结构部件的设计参数、长大桥梁无砟轨道无缝线路、高架车站无缝道岔受力与变形规律;    3)桥上无砟轨道无缝线路技术先进、经济合理,达到国际先进水平,满足我国京沪高速铁路建设的需要;    4)提出符合高速铁路设计、运营要求的桥上无砟轨道无缝线路设计方法,使无缝线路具有良好动力性能,满足相应的技术指标;    5)提出的高速铁路长大桥梁、高架站无砟轨道无缝线路检测和监测技术能够快速、高效地监控无缝线路状态,为列车的安全、平稳运行提供保障。 对京沪高速铁路长大桥梁、高架站无砟轨道无缝线路进行检算及评估,相关检算及评估方法可作为高速铁路优化无缝线路布置、道岔布置、无砟轨道结构、桥梁结构的依据。
北京交通大学 2021-04-13
一种用于桥梁伸缩缝病害控制的永磁式调谐质量阻尼装置
本发明公开了一种用于桥梁伸缩缝病害控制的永磁式调谐质量阻尼装置,包括质量块、分布于质量块内外侧并覆盖有石墨烯涂层的永磁铁、内外铜板及若干弹簧。内外铜板位置固定,质量块通过弹簧悬挂于该装置的上固定板,箱梁水平振动时引起质量块摆动,内铜板切割质量块内侧永磁铁产生的磁感线;箱梁竖向振动时引起质量块竖向运动,外铜板切割外侧永磁铁的磁感线,振动能量通过铜板的电阻热效应耗散。本装置构造简单、安装方便、克服了传统粘滞流体阻尼器漏油的缺点,大大延长了阻尼器的使用寿命、提升了装置的阻尼效率;此外,该阻尼装置可同时控制梁端水平向与竖向的位移,大幅降低因梁端转角而造成伸缩缝扭曲破坏的概率,控制了伸缩缝病害的产生与发展。
东南大学 2021-04-11
首页 上一页 1 2
  • ...
  • 13 14 15
  • ...
  • 105 106 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1