高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种促进金盏菊开花的乳酸菌制剂
本发明公开了一种促进金盏菊开花的乳酸菌制剂,该乳酸菌制剂中的活性菌由短乳杆菌(Lactobacillus brevis)JLD715和植物乳酸杆菌(Lactobacillus plantarum)LP28组成。这两种菌复合施用后对金盏菊的生长代谢有明显的影响,即对金盏菊的株高、茎粗、冠幅、单叶最大面积、花期均有促进作用,不但能对金盏菊的生长性状产生有益的影响,还能延长花期,增大花朵直径,提高金盏菊的观赏特性。
青岛农业大学 2021-04-13
一种具有神经保护活性的药物及其制剂
本成果提供一种具有神经保护活性的药物及其制剂。
西南交通大学 2016-06-24
可降低细菌耐药性的群体感应抑制剂
细菌群体感应抑制剂是李红玉教授团队以嗜酸硫杆菌为研究材料,研发的一种可通过阻断细菌生物膜的形成从而显著降低细菌耐药性的群体感应抑制剂。细菌生物膜是大量细菌通过信号分子交流从而诱导特定基因表达凝聚成的具有高度抵抗力的结构性细菌群落,坚实稳定、不易破坏,抗生素等物质难以贯穿从而使得药物没有作用。该团队研发出的群体感应抑制剂是一种信号分子调节剂,在不影响细菌正常生长的前提下,可抑制细菌的交流从而阻止了细菌生物膜的形成(图 1),降低了细菌的抵抗力,从而降低其耐药性。该产品拥有国家发明专利,具有自主知识产权
兰州大学 2021-04-14
“卡力素”肠内营养制剂的研发及临床应用
项目现状:我科参与国内多种肠内营养制剂的研究及临床应用效果观察,积累了丰富的经验。现已独立完成“卡力素”肠内营养制剂的基础研发、动物实验并应用于创伤病人进行临床效果观察,实验表明该制剂能有效改善创伤患者蛋白质营养状况和免疫功能。目前,尚有待于将该产品产业化生产,并进行市场推广。 项目创新:将食品工程与临床营养学等学科进行交叉和优势集成实现肠内营养制剂的生产技术和应用方面的创新,生产出更易于被机体吸收利用的肠内营养制剂,并以此作为能量及优质氮源的来源,以改善机体营养状况。另外,目前我国尚无医用食品管理法规,通过本项目的研究,为形成我国医用食品标准提供基础数据,并建立相关的医用食品质量标准。
四川大学 2016-04-15
不锈钢管列置双TIG电弧高效低能耗焊接生产技术
广泛应用于汽车、锅炉及装备制造等行业的不锈钢焊管是我国钢铁行业重点发展的高端不锈钢精品深加工产品,其由钢带卷制成管而由钨极氩弧焊接(TIG)而成,但在高速焊接生产过程中会出现咬边和驼峰焊道成形缺陷,成为不锈钢管高效焊接生产的技术“瓶颈”和行业技术发展的堵点、难点。基于此,通过研究揭示不锈钢管TIG焊接生产提速后出现的咬边、驼峰焊道表面成形缺陷形成机理,提出利用辅助TIG电弧对熔池进行热力联合调控抑制高速TIG焊接过程中咬边和驼峰焊道的形成,发明了列置双TIG电弧(Tandem TIG)高效低能耗焊接工艺,将咬边和驼峰焊道缺陷防止在萌芽状态;与单TIG焊相比,焊接速度提高1倍以上,能耗降低20%以上,很好地解决了焊接高质量和高效率难平衡的问题;开发了钨极烧蚀在线监测系统和不锈钢管在线固溶热处理系统,实现了不锈钢管高效、低能耗、低成本焊接生产,提升了不锈钢焊管行业技术水平。在此基础上,基于相同热力调控理念开发了TIG电弧辅助MIG/MAG电弧高速焊接工艺,焊接速度提高75%。项目累计授权发明专利5件,制定团体标准2项,工信部认定节能技术1项,获中国专利优秀奖等科技奖励6项。项目成果推动和引领不锈钢焊管生产向高效、低能耗方向发展,具有显著的技术优势和应用前景。 (a)工艺原理 (b)列置双TIG电弧和熔池图像 图1 列置双TIG电弧高速焊接工艺原理 (c)铁素体不锈钢焊管 (d)奥氏体不锈钢焊管 图2 不锈钢管列置双TIG电弧高速焊接生产 图3 钨极烧损在线监测系统 图4 奥氏体不锈钢管高速焊接生产过程中在线固溶热处理工艺流程
山东大学 2025-02-08
一种鲜切果蔬的常温常压等离子体杀菌装置
本实用新型提供了一种鲜切果蔬的常温常压等离子体杀菌装置,包括绝缘材料介质板的箱体、小箱体、套管,等离子体发射装置、等离子体发生器、搁物容器、调节旋钮等部分;箱体内设有小箱体,小箱体底部设有可以调节高度的调节旋钮;等离子体发射装置设置有电源开关、功率调节旋钮、时间调节旋钮,通过线路穿过设有绝缘材料套管进入小箱体,与常温常压等离子体发生器相连,等离子体发生器电极板上设有10‑20个的针头式发射电极,通过调节旋钮实现极距的调节,下极板上方放置盛放鲜切果蔬的搁物容器。本实用新型装置结构简单,操作方便,在杀菌过程中保持了果蔬原有的色香味及营养成分。
青岛农业大学 2021-04-13
高效油相抗垢剂
随着我国炼油加工深度的不断提高,作为主要的二次加工装置—催化裂化的原料也随之变的越来越复杂,由于原料油性质的恶化,导致催化装置油浆系统结焦问题日益严重,已经成为影响装置长周期安全运行的主要障碍之一。由于油浆系统堵塞而造成的装置被迫降量、甚至停工的事情时有发生。因此,解决好油浆系统结焦问题是保证催化装置正常运行的主要课题。 研制开发了高效油相抗垢剂,通过在多个常减压合合催化装置上长期应用,取得了很好的效果。该药剂不但有明显的防垢功能,而且具有一定的除垢效果。 该药剂还可用于常减压装置塔底及加氢装置的阻垢,阻垢率达90%以上。
北京科技大学 2021-04-11
高效个体冷却技术及系统
"在高温环境下工作人员由于热应激效应导致体能消耗过快而使得作业能力下降甚至出现生命危险,为此近年来国内外在个体冷却方面做了大量的研究工作。我国在这方面的研究工作起步较晚,但也取得了一定的进展并研制出多种形式的冷却装置,多用于航空航天、军用等领域,而医用和民用相对较少。目前主要存在设备笨重,制冷效率不高,无法持续制冷等问题。 本项目攻克了制冷机微型且高效的关键技术难题,开发出可穿戴式个体冷却装置系统,具有重量轻、体积小、效率高等优势(仅重2.75kg,制冷量240W)。在单位重量制冷量(W/kg)、单位体积制冷量(W/L)等关键综合技术指标上,均超过国内外已报道的最好水平。该装置系统在军机、坦克、装甲车等高温作业环境下人员个体冷却以及军用电子设备高效冷却等领域具有广阔的应用前景,同时在在可穿戴设备、医用便携式冰箱和降温装置、太阳能制冷等民用领域也有巨大应用潜力。"
北京航空航天大学 2021-04-10
高效无偶氮黑液体染料
成果描述:高效无偶氮黑液体染料,系本研究室开发的拥有自主知识产权的新型染料。其主要技术创新性在于安全性和高效性,即绝对不含偶氮化合物或任何芳香性组分,其染色强度为普通酸性染料的5-10倍。 该染料的其它特性如下: a. 适应国际市场的要求 b. 质量特色:染色强度高,耐光,色纯正,环境友好 c. 价格低廉:仅为普通染料的40% d. 使用方便:不改变现有工艺,易分散市场前景分析:该染料可用于皮革及棉纤维染色。 按黑色染料需求的1/3计,年销售规模可能达到1200吨(约折合常规染料1000吨)。与同类成果相比的优势分析:(1)染色纯度:纯黑,不含可察觉的副色 (2)染色强度(与酸性黑ATT相比较):5-10倍 (3)耐光性:优 (4)耐湿擦:≥3级 (5)抗败色作用:优于酸性黑ATT (6)固含量:10~15%,高分散体系 (7)环保特性:不含有毒组分,生产过程安全,少排放 (8)原料:全部国产,价格低廉,以固体物计≤1.5万元/吨 (9)生产周期:约24小时 国际先进。
四川大学 2021-04-11
高效氢燃料电池技术
1)质子交换膜燃料电池电堆 质子交换膜燃料电池是指一类以质子交换膜作为电解质的燃料电池体系,这种燃料电池也经常被称为固态聚合物燃料电池,电池中包括质子交换膜、催化剂层、气体扩散层、双极板,一般将质子交换膜、催化剂层及气体扩散层电极压成一体,并称为膜电极集合体。 研究组目前掌握质子交换膜燃料电池电堆的关键技术,包括各关键材料的结构、特性,并开展了大量研究实验分析环境湿度、工作压力、工作温度、反应气体条件、燃料利用率和空气利用率等对电池电压-电流性能的影响。已有定型产品,具备科技成果的技术转化能力。 2)车用燃料电池系统 用燃料电池做电源驱动汽车是电动汽车的一种,其电池的能量是通过氢气和氧气的化学作用,而不是经过燃烧,直接变成电能或的。燃料电池的化学反应过程不会产生有害产物,因此燃料电池车辆是无污染汽车,燃料电池的能量转换效率比内燃机要高2~3倍,因此从能源的利用和环境保护方面,燃料电池汽车是一种理想的车辆。具备产业化技术能力。 3)军用燃料电池系统 军事上的应用是燃料电池最主要的也是最适合的市场之一,其最初就是作为宇宙飞船或潜艇使用的数千瓦级能源而开发的。此后,由于各国政府尤其是加拿大、美国和德国对质子交换膜燃料电池用于航空航天和军事领域研究的重视和资助,使得其技术越来越成熟,性能日益提高。 针对军事应用领域的潜艇动力源、通信指挥系统电源、军事备用电源、应急照明电源以及航空航天领域等,研制一款氢能备用电源产品,采用箱柜式机体外壳,内部可根据需要配置单个或多个质子交换膜燃料电池电堆模块,并外置多个固态氢存储装置,满足各种用电需求。
江苏师范大学 2021-04-11
首页 上一页 1 2
  • ...
  • 35 36 37
  • ...
  • 272 273 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1