高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
中环清源(北京)科技有限公司
中环清源(北京)科技有限公司 2024-03-18
厦门同昌源电子有限公司
厦门同昌源电子有限公司 2024-03-29
江苏君源环保科技有限公司
江苏君源环保科技有限公司,源自:“问“君”哪得清如许,为有“源”头活水来。”君源人秉承君子之道,依托公司专业的EHS(环境、安全、健康)技术沉淀,为获取“源头活水” 精心研发、设计、生产专业的水处理、大气污染物处理、固体废弃物处理等环保设备。 公司由从业三十年多年的专业科研人员进行产品研发,依公司数十载从事EHS(环境、安全、健康)行业的专业积累,聘请具有500强企业十年以上行业资深营销团队,倾心打造“君源环保”。 公司坐落于素有“锦绣江南金太仓”美誉的太仓软件园区,太仓作为距离上海最近的城市,距虹桥枢纽三十分钟车程,交通便捷,经济发展实力全国百强县市第四名。太仓软件园作为太仓高新区科技企业孵化器,是以软件开发、电子信息、电子商务、生物医药、新材料、新能源、节能环保、服务外包、文化创意及创业人才为重点的高新技术产业基地,为君源环保的发展提供良好的技术支撑和发展环境。 公司主要产品包括:水处理教学科研实验设备、大气污染控制教学科研实验设备、固体废弃物处理教学科研实验设备、水文地质教学科研设备、环境治理设备、实验安全设备和环境实验仿真软件等。 公司主要面向全国两千多所高校环境、资源、给排水、水文地质等专业的实验室和科研院所提供专业的教学与科研设备,面向相关客户提供各类环境污染治理设备。通过君源环保的创新性产品为祖国培养更多的环保人才,解决客户的环保需求,同时为企业的发展注入更多的活力。 公司与南开大学、武汉大学、中国矿业大学和扬州大学等高校、科研院所进行产学研合作,依托雄厚的技术实力,致力于生产安全、实用、精准的创新型环保设备,始终坚持品质为先,确保“源头活水”源源不断。为祖国的青山绿水、蓝天白云建设贡献君源环保的一份力量。
江苏君源环保科技有限公司 2021-12-07
北京湘顺源科技有限公司
北京湘顺源科技有限公司是一家由美国留学归国人员创建的高新技术企业,坐落于北京中关村德胜科技园区。 公司集科学研究、工程设计、设备制造和工程施工为一体的专业从事环境治理的综合性企业。公司专业从事实验室纯水、超纯水系统、实验室污水处理、工业污水处理、实验室废气处理、工业废气处理,及医药、生物技术、化工、食品饮料、电子、涂料、化妆品、功能材料、冶金、电力等行业用纯水/超纯水系统、实验室及工业废水处理/废气净化处理设备的研发、生产和销售。 北京湘顺源科技有限公司研发、生产的新一代、最先进的PINE-TREE“帕恩特”系列纯水/超纯水系统/实验室废水处理/实验室废气净化处理设备以其精美的外观设计,简单的人性化操作,先进的自动化程度,稳定的出水水质,独特的功能特点,专有的生产工艺以及采用美国最先进的水处理技术和配件等方面优势,深受广大用户的信赖,广泛应用于科研、高校、环监、产品检验、药检、疾控、畜牧、血站、企业等行业。  公司拥有国际先进的管理模式,丰富的研发经验,强大的技术支持,完善的售后服务体系,注重自身的不断发展和创新,提倡质量第一;拥有一支技术精湛的工程师队伍,通过良好的销售网络,完善的售后服务体系,为各行业的客户提供优质的售前和售后服务。 北京湘顺源科技有限公司的诚信、实力和产品质量获得业界的认可。欢迎各界朋友莅临参观、指导和业务洽谈。
北京湘顺源科技有限公司 2021-12-07
浙江华盛源仪器有限公司
浙江华盛源仪器有限公司 2022-05-24
江苏锦源医疗科技有限公司
江苏锦源医疗科技有限公司 2022-05-24
有关微腔非线性光学的研究
左图:表面二次谐波效应示意图;右图:光学微腔增强表面非线性效应。 二阶非线性光学效应是现代光学研究与应用中最基本、最重要的非线性光学过程之一,被广泛地用于实现频率转换、光学调制和量子光源等。由于结构反演对称性的限制,常用的硅基光子学材料往往不具备二阶非线性电偶极响应。借助材料的表面或界面,这种反演对称性可以被打破,进而诱导出二阶非线性光学响应。然而,传统的表/界面非线性光学研究存在两个重要挑战:一是非线性转换效率极低,即使在高强度的脉冲光激发下也仅能产生极少量的二阶非线性光子;二是体相电四极响应严重地干扰表面对称性破缺诱导的非线性信号分析。 该项工作中,北京大学课题组利用超高品质因子回音壁光学微腔极大增强光与物质相互作用的优势,在二氧化硅微球腔中获得了高亮度的二次谐波和二次和频信号。为了充分发挥微腔“双增强”效应,研究人员发展了一种动态相位匹配方法,利用光学微腔中热效应和光学克尔效应的相位调制,高效地实现了基波和谐波信号同时与微腔模式共振。实验上获得的二次谐波转换效率达0.049% W-1,相比传统表面非线性光学,该效率增强了14个数量级。左图:实验获得的激发光和二次谐波光谱图;右图:动态相位匹配过程二次谐波功率变化。 研究人员进一步通过对基波偏振和二次谐波模式场分布的测量分析,成功提取得到只有表面对称性破缺诱导的非线性信号,排除了体相电四极响应的干扰。这种表面对称性破缺诱导的非线性信号有望作为一种超高灵敏度的无标记“探针”,用来检测和研究材料表面分子的结构、排布、吸收等物理与化学性质,为表面科学研究与应用提供了一个全新的物理平台;同时,该项研究发展的动态相位匹配机制具有普适性,可进一步推广到不同材料、不同形状的光学谐振腔中,有望在非线性集成光子学中发挥重要作用。
北京大学 2021-04-11
飞秒-纳米时空分辨光学实验系统
为了更加直观地探究纳米世界,大量研究者致力于发展高时间-空间分辨能力的微纳探测技术,由龚旗煌院士负责的“飞秒-纳米时空分辨光学实验系统” 国家重大科研仪器研制项目正是围绕这一目标开展工作。近日,该重大仪器项目在基于超快光电子显微镜技术实现表面等离激元的多维度探测方面取得重要进展,相关成果于2018年11月19日发表在《自然通讯》 杂志(Manipulation of the dephasing time by strong coupling between localized and propagating surface plasmon modes, https://doi.org/10.1038/s41467-018-07356-x)。 基于金属纳米粒子的局域表面等离激元因其高局域强度,小局域尺度,高灵敏度等特点,被大量应用在不同领域。但是,几个飞秒的超短模式寿命(dephasing time)大大限制了其应用的广泛性和实用性。该工作设计的多层结构实现了局域表面等离激元和传播表面等离激元的强耦合(图1(a))。动态数值模拟结果也清晰地证明在强耦合下局域表面等离激元模式和传播表面等离激元模式之间的能量交换。近场方面,光电子显微镜对表面等离激元模式进行直接成像,大大突破了原有的远场探测技术的限制。并且结合不同激发光源,实现不同维度的探测。结合波长可调的激光光源,光电子显微镜在频域记录下表面等离激元模式随波长变化的强度演化过程(图1(b))。结合超快泵浦探测技术,光电子显微镜在时域记录下表面等离激元模式随时间变化的演化趋势。该工作更加深入并直观地探测强耦合体系中的能量转换过程,并通过强耦合中失谐量的改变实现模式寿命的操控,相较于未耦合的局域表面等离模式,强耦合的模式寿命由6飞秒(10-15秒)提高到10飞秒。这一研究成果对进一步发展基于表面等离激元的人工光合成、生物传感等应用具有重要的指导价值。图1、(a)光电子显微镜和多层结构示意图,(b)远场和近场探测曲线、不同波长激光激发下光电子显微镜记录的局域表面等离激元模式分布图。 此研究是由北京大学和日本北海道大学共同合作完成,北京大学物理学院博士生杨京寰和重大仪器项目的国际合作者、北海道大学助理教授孙泉为该文章的共同第一作者,北京大学龚旗煌院士和北海道大学Misawa教授为共同通讯作者。除了自然科学基金委的国家重大科研仪器研制项目,该工作还得到了科技部、北京大学人工微结构和介观物理国家重点实验室、极端光学协同创新中心、“2011计划”量子物质科学协同创新中心、日本文部科学省及学术振兴会、北海道大学纳米技术平台等单位的支持。目前国家重大科研仪器研制项目“飞秒-纳米时空分辨光学实验系统”的研制正在有序推进中,已经取得了一批包括此工作在内的阶段性成果。该实验系统的核心仪器是附带低能电子显微功能的光电子显微镜(PEEM), 其激发光的波长覆盖范围从极紫外到近红外(图2)。下一步该实验系统有望在二维材料、光电材料与器件、表面介观物理等研究领域大显身手、发挥积极作用。图2、北京大学研究团队的飞秒纳米时空分辨系统
北京大学 2021-04-11
飞秒-纳米时空分辨光学实验系统
该实验系统能够同时实现几个飞秒的超高时间分辨率和四纳米的超高空间分辨率,成为介观光学与微纳光子学研究的强大实验测量手段。
北京大学 2021-04-11
非线性光学准晶超构表面
提出并制备了非线性光学准晶超构表面,并研究了超构单元局域对称性和排布方式的全局对称性对超构表面远场非线性光辐射的共同影响。该非线性光学准晶超构表面运用了基于非线性光学贝里几何相位的金属等离激元结构单元,依据经典的彭罗斯准周期拼接和具有六重对称性的六角准周期拼接形成了不同种类的准晶结构。彭罗斯结构的准周期拼接具有五重对称性,其衍射图案则具有十重对称性,这些都是晶体衍射定理所不允许的对称性。而六角准周期拼接是2017年提出的一种准周期拼接,它具有晶体衍射定理所允许的六重对称性,却并不遵从短程有序的规律。这两种拼接方式可以与某些特定的比例联系起来,这些比例由不同阶次的迭代规则决定:彭罗斯结构对应一阶迭代过程,其比例是人们熟知的“黄金分割比”,而六角准周期晶格对应三阶过程,其比例可称为“黄铜分割比”。自六角准周期晶格从理论上提出以来,本项工作中的非线性光学准晶超构表面是首个利用黄铜分割比实验实现的人工光学结构。 非线性光学准晶超构表面中不同转向的超构单元对入射基频光的响应是均匀的,因此其线性光学衍射仅能反映超构表面的全局对称性,即晶格结构决定其远场光衍射。而在倍频实验中,即出射光的频率是入射光的两倍(如1200nm 变为600nm)。由于打破了超构单元的中心反演对称性并引入了非线性光学几何相位,其非线性光学衍射与晶格结构的局域对称性、全局对称性同时相关。因此,可以通过调控超构单元的指向分布,进而有效地调控倍频光衍射中的零级。非线性光学准晶超构表面这一概念或将为设计超构表面非线性光源、人工微纳光学结构材料提供新的思路。
南方科技大学 2021-04-13
首页 上一页 1 2
  • ...
  • 18 19 20
  • ...
  • 81 82 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1