高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
环压电陶瓷
产品详细介绍环型叠堆型压电陶瓷选型表http://rznxkj.com/index.html 1 、产品特征小位移、大出力、低功耗、控制精度高(可实现纳米级微动控制)、体积小、可靠性高、寿命长。 2 、产品应用产品广泛应用于工业生产和科研开发,主要领域有激光调节,光纤对接,精密对位,生命科学等。 3 、产品实图与外形尺寸图。         参 数型 号 外形尺寸φA×φB×L[mm]  标称位移Lμ[um@150V]   无位移推力/最大推力[N@150V] 刚度[N/um] 压电陶瓷     响应频率f 0 [kHz] 静电容量[nF](±20%)环型叠堆型压电陶瓷 RPRS150505 φ5×φ2.5×6 5 330 95 2 0.3RPRS150510 φ5×φ2.5×10 10 350 60 1.5 0.6RPRS150520  φ5×φ2.5×18 20 390 35 1 1RPRS150810  φ8×φ4.5×10 10 750 110 0.9 1.1RPRS150820  φ8×φ4.5×18 20 800 65 0.5 2.0哈尔滨溶智纳芯科技有限公司http://www.rznxkj.com联系电话:15846526797 销售QQ:478257251 联系电话:0451-58883028 传真:0451-58883029地址:黑龙江省哈尔滨市外道区永平小区205栋C座202E-mail:邮编:150050
容智科技 2021-08-23
低压电源
产品详细介绍
河北省沙城中学教学仪器厂 2021-08-23
低压电源
产品详细介绍
河北省沙城中学教学仪器厂 2021-08-23
力致发光材料体系的新设计策略
发现了聚集诱导热激活延迟荧光(AIE-TADF)材料具有力致发光现象(Angew. Chem. Int. Ed., 2015, 54, 874-878),然后又发现了一些AIE分子具有力致发光性能,并对其产生机理进行了深入研究(Chem. Sci., 2015, 6, 3236-3241;Chem. Sci., 2016, 7, 5307-5312;Chem. Sci., 2018, 9, 5787-5794)。2017年,武汉大学李振教授团队与池振国教授团队合作,发现了一些纯有机磷光材料具有力致发光现象,把力致发光拓展到有机磷光领域(Angew. Chem. Int. Ed., 2017, 56, 15299-15303;Angew. Chem. Int. Ed., 2017, 56, 880-884)。2018年,池振国教授团队又发现了力致长余辉发光现象(Chem. Sci., 2018, 9, 3782-3787),至此,纯有机材料的力激发发射荧光、TADF、磷光或长余辉等不同发光类型的力致发光拼图拼齐。2018年,池振国教授团队(Angew. Chem. Int. Ed., 2018, 57, 12727-12732)与青岛科技大学杨文君教授团队(Chem. Commun., 2018, 54, 8206-8209)同时研究发现,将主体材料(具有力致发光性能)与不同客体发光材料(不具有力致发光性能)进行复合,可以通过机械力激发不同发光颜色客体分子产生发光,从而把力致发光材料体系从纯有机单组分进一步拓展到复合体系,极大地丰富了有机力致发光材料体系。中山大学化学学院池振国教授研究团队提出利用一种更加简单的方法来精准设计力致发光复合材料体系的新设计策略。该策略设计的力致发光复合材料体系中,单独的主体材料和客体材料都不具有力致发光性能,但是通过主客体复合得到的复合体系则具有力致发光性能,实现了从无到有的力致发光。同时,客体材料的选择范围非常广,可以是纯有机发光材料、配合物磷光材料,也可以是无机量子点发光材料等等。通过改变客体材料的种类,非常容易调节力致发光的发光颜色、亮度、色纯度以及发光寿命等性能,极大地丰富了力致发光材料的研究内涵。结合光物理测试和理论计算,深入探究这类新型力致发光复合体系的激发过程和发射过程,并揭示了复合体系力致发光的激活机制是源于压电效应和主客体分子的能量转移。
中山大学 2021-04-13
性能可设计梯度铁基减摩材料开发
梯度铁基减摩材料主要用于汽车、工程机械、 航空等领域的液压系统关键摩擦副零件的制造,如用于滑动轴 承、齿轮泵侧板、柱塞泵配油盘等典型零件的制造。 本项目针对铁基减摩材料高强度与良好自润滑特性难以共存的矛盾,开发的梯度铁基减摩材料基于致密强化配方设计, 实现基体材料致密高强、高承载目标;基于表层材料固体润滑 技术与孔隙可控设计,利于液-固润滑介质供给摩擦表面,达到 液-固润滑协同作用,改善材料减摩、抗粘
合肥工业大学 2021-04-14
复杂结构/先进材料承压设备应力分析设计
南京工业大学具有A1、A2、A3及SAD级特种设备(压力容器)设计资质,机械与动力工程学院化工设备设计研究所是设计证的主体部门。本项目采用弹性分析设计及基于弹塑性理论的非弹性分析设计方法为企业开展石油化工、煤化工等重要装置设备结构的优化设计及安全评定。以“极端工况”、“大型化”为特色,注重压力容器的创新设计。以国家自然科学基金“基于塑性失效的正交各向异性金属承压结构设计方法”为依托,开展先进材料/特殊材料承压结构的分析设计。 本项目技术先进,手段多样化。采用弹性分析设计及基于弹塑性理论的非弹性分析设计方法;设计标准包括国内的JB4732-1995(2005年确认)、欧盟标准EN13445及美国标准ASMEVIII-2。充分发挥学校科研和人才优势,促进本校技术成果的转化与转移,同时接受企业委托承接复杂结构承压设备的分析设计与结构优化。设计的大型结构具有运行可靠、轻量化等特点,具有显著的社会和经济效益。
南京工业大学 2021-01-12
压电陶瓷变压器高压电源
可以量产/n该产品是利用压电材料具有正、反压电效应, 它在机械能和电能二 次转换中,通过内部阻抗变换实现变压作用。压电变压器不会因工作频率 高低而影响其性能,也不会因为在高频下有任何能量损失,完全和片状电 感电容相匹配。压电变压噐是一体化结构, 其能量转換效率高,传输能 量密度为磁性变压器的 3-4 倍。压电变压器较之磁性变压器更薄,更轻 和更小,达到电子产品小型化的要求。压电变压器相对于磁性变压器性能 更具优势,它不但不会短路烧毁、不会受潮、不会高压击穿、不用铜铁 材料、不引起电磁干扰、而且节能、
湖北大学 2021-01-12
溴铅铯粉体制备技术
可以量产/n目前合成溴铅铯粉体大多采用去离子水做溶剂的化学共沉淀法,虽然溴化铅和溴化铯在去离子水中有较高的溶解度,且用去离子水作溶剂能大量合成溴铅铯粉料,但是水基液相法易产生副产物CsPb4Br6 和CsPb2Br5。针对现有技术的以上缺陷或改进需求,该项目提供了一种溴铅铯粉体制备技术,其目的在于获取纯度高,杂相少,颗粒均匀的溴铅铯粉体。该制备方法中,起始溶液以氢溴酸为溶剂,化学共沉淀反应中以氢溴酸为底
华中科技大学 2021-01-12
铅富氧闪速熔炼技术
铅富氧闪速熔炼新技术及装置,攻克了低品位铅矿、铅二次 资源、卡林金矿和复杂含金物料等的经济利用关键技术与装备难题及工程实践 问题,形成了经济、高效、清洁、短流程直接炼铅新工艺,并建成了年产 10 万吨粗铅规模的示范工程。铅总回收率 98.5%、硫利用率大于 98%,伴生金银回收率 99.5%、铜回收率 85%、锌回收率大于 90%。主要创新点为:①发明了铅富氧闪速熔炼新技术,改变了铅的生成途径,增强了工艺对 物料的适应性,入炉料含铅由底吹熔炼的 48%降至 25%甚至更低,实现了低品 位铅矿、铅二次资源的经济利用,解决了铅冶炼过程能耗高、污染重等问题; ②发明研制了铅富氧闪速熔炼成套装备,优化了反应塔的温度场、氧势场、颗 粒场以及熔池的气流场,生产操作更加稳定;③创新了铅富氧闪速熔炼的成套 操作技术,形成了清洁、高效、短流程、伴生金属回收率高的直接炼铅新工艺; ④发明了难处理卡林金矿和硫化金精矿混合熔炼的金高效捕集新技术,实现了 伴生金、银、铅、锌、硫的同步高效回收。相关研究成果以 20 余篇论文形式在 国际会议及学术期刊上宣讲和发表,被收入邱定蕃院士主编的《有色冶金与环 境保护》专著中。
北京科技大学 2021-04-13
通过晶体结构设计合成新型功能材料
成功获得了两种具有优良性能的新型功能材料,分别为强响应红外非线性光学晶体Sr6Cd2Sb6O7S10,以及高稳定性的锂离子导体Li4Cu8Ge3S12。 波长在320 m的中远红外可调谐激光在军事和民用方面,如激光制导、红外激光通讯、红外遥感、红外激光雷达、以及环境监测等,都有非常重要的应用。红外非线性光学晶体材料可以通过光学参量震荡(OPO)、倍频(SHG)或者差频(DFG)等非线性频率转换技术,变频输出中远红外激光。目前实用的ZnGeP2、AgGaS2和AgGaSe2等黄铜矿结构晶体均为国外在20世纪70年代发现,但它们都存在各自的问题,例如AgGaS2的热导率小,激光损伤阈值较低,难以实现高功率激光输出;ZnGeP2晶体中存在严重的双光子吸收,难以实现宽频输出。这些问题都限制了材料的实际应用。因此,探索高性能的新型红外非线性光学晶体材料具有十分重要的意义。
北京大学 2021-04-11
首页 上一页 1 2
  • ...
  • 5 6 7
  • ...
  • 300 301 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1