高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
汽车漆用DPP类颜料类有机颜料
DPP类颜料(吡咯并吡咯二酮系有机颜料)具有很高的耐晒牢度、耐气候牢度和耐热稳定性,可单独或与其它颜料拼混使用以调制汽车漆。在DPP系有机颜料的专利有效期内(1986~2003),瑞士Ciba公司是此类有机颜料的唯一生产商。2003年后,国内开始研发生产DPP类有机颜料,但是截止到?00?年,能够被国外的汽车漆厂商接受用于调制汽车原装漆的只有我们生产的品种。生产DPP类颜料的技术关键主要在于中间体(各种芳香腈和丁二酸酯)的低成本生产,按照Ciba公司的专利,合成DPP类化合物所用的丁二酸酯一般为丁二酸的低级脂肪酯,其缺点是反应收率不高,有相当部分的原料没有转化或是生成了对人体有害的副产物。 为此,我们发明了一种环境友好的生产芳香腈的工艺,低成本地制造出所需要的芳香腈,还设计并合成了一种丁二酸的高级脂肪酯,用它与芳香腈反应可高产率地获得DPP类化合物,再对后者采用我们在以往的工作中累积的颜料化加工的技术对其进行颜料化加工,从而高品质地生产出DPP类有机颜料,部分品种已经被国外的汽车漆厂商用于制造汽车漆,成果获国家发明专利(ZL200510030080.6)授权,并在胶州市精细化工有限公司实现了工业化生产。
华东理工大学 2021-04-13
生物质及城市有机废物的高效、清洁发电技术
项目研究的背景及用途:本项目的出发点是将我国大量的生物质及城市有机废物资源(如农作物废弃物、林业废弃物、城市垃圾中丰富的有机物、造纸造浆中的废物、酒精生产厂的废液废渣、动物粪便、食品加工中的废弃物、家庭中有机垃圾、草类废弃物,产量约每年 30 亿吨)高效转化为清洁的电力。我国当前的生物质及城市有机废物资源没有得到合理的利用。利用生物质作为能源,不仅仅是解决了长期的能源供给问题,更重要的是大大缓解了环境保护的压力。本项目的技术路线所排放的其他污染物如硫化物、粉尘粒子的浓度也大大低于现有的燃煤发电厂。此外,高效、清洁的气化发电技术可以克服现有的城市垃圾处理处置方式的缺点。与现有垃圾焚烧炉技术相比,本项目的技术路线具有以下优点: (1)发电效率高; (2)炭转化率高、能量利用率高; (3)排放的二次污染物少; (4)初投资和远行费用低。 本项目的目的是有效地利用生物质及城市有机废物,通过流化床气化的方式将其转变为电力。确保生产电力的成本可以与现有的燃煤电厂竞争,同时确保生产过程符合环境友好性要求,没有明显的二次污染。成果水平及主要技术指标:本技术水平处于国内领先水平,在国际上也是领先的。目前正在申报发明专利 2 项。所需厂房占地面积:需要稳定的生物质或生活垃圾原料供应(年需要量为8000 吨左右);设备相对比较简单,但需要由相关的厂家定制生厂;厂房面积约为15000~20000 平方米;投资规模在 500 万左右。 市场分析及效益预测:本项目的市场前景很大。以天津市为例,天津市每年约有 600 万吨生物质资源,可发出功率为 90~100 万千瓦的电。若考虑大量种植能源作物,则可以发出更多的电,而且随着发电规模的扩大,可以显著降低成本。如果单座发电厂的规模在 2000~4000 kW,该发电成本与燃煤电厂相当。为天津市大量的生物质废物找到一条合理的利用途径,同时解决了因城市有机垃圾堆置而带来的环境污染问题。以 2000 千瓦的发电能力为例,投资回收期为 2.2 年,年盈利为 220 万左右。
天津大学 2021-04-11
一种负载型Ag-Pd/C3N4纳米催化剂催化甲酸脱氢的方法
(专利号:ZL 201510680510.2) 简介:本发明公开了一种负载型Ag‑Pd/C3N4纳米催化剂催化甲酸脱氢的方法,属于化学化工技术领域。本发明将制备好的负载型Ag‑Pd/C3N4纳米催化剂置于反应器中,将反应器置于油浴中升至一定温度,接着将甲酸和甲酸钠混合液加入反应器中进行反应,生成的氢气采用排水法收集。所述负载型Ag‑Pd/C3N4纳米催化剂采用Ag、Pd按照一定摩尔比配成溶液,将载体C3N4加入上述溶液中,向混合液中添加还原剂,经过滤、干燥后制得。与传统的负载型催化剂不同的是:根据本发明,调节催化剂中金属银、钯的含量及C3N4含量就可以制得用于甲酸脱氢制氢气的高活性、高选择性负载型Ag‑Pd/C3N4纳米催化剂。
安徽工业大学 2021-04-11
一种用于催化氧化NO的钛基载体负载钒磷氧化物催化剂及其制备方法
(专利号:ZL 201410008976.3) 简介:本发明公开了一种用于催化氧化NO的钛基载体负载VPO催化剂及其制备方法,属于大气污染治理技术领域。该催化剂以N掺杂TiO2为载体,负载VPO活性组分,经以下方法制备得到:首先,取一定量的TiO2和氮源化合物加入蒸馏水中,经搅拌、干燥、煅烧等步骤后获得载体;其次,将活性组分前驱体和还原剂按比例加入有机酸溶液中,经搅拌、水浴、干燥等步骤后得到VPO活性组分;最后,将载体和VPO活性组分按一
安徽工业大学 2021-01-12
一种用于催化氧化NO的钛基载体负载钒磷氧化物催化剂及其制备方法
(专利号:ZL 201410008976.3) 简介:本发明公开了一种用于催化氧化NO的钛基载体负载VPO催化剂及其制备方法,属于大气污染治理技术领域。该催化剂以N掺杂TiO2为载体,负载VPO活性组分,经以下方法制备得到:首先,取一定量的TiO2和氮源化合物加入蒸馏水中,经搅拌、干燥、煅烧等步骤后获得载体;其次,将活性组分前驱体和还原剂按比例加入有机酸溶液中,经搅拌、水浴、干燥等步骤后得到VPO活性组分;最后,将载体和VPO活性组分按一
安徽工业大学 2021-01-12
原子级分散双活性位Pt-Cu/TiO2催化剂在丙烷氧化催化中的应用
本发明公开了一种原子级分散双活性位Pt‑Cu/TiO<subgt;2</subgt;催化剂在丙烷氧化催化中的应用,属于环保催化材料和大气污染治理领域。所述催化剂以TiO<subgt;2</subgt;为载体,以Pt、Cu为双负载催化活性组分,活性组分Cu负载量为TiO<subgt;2</subgt;载体质量的0.1‑1wt%,Pt负载量为Cu和TiO<subgt;2</subgt;质量之和的0.02‑0.06wt%,所述催化剂表面形成Pt‑O‑Cu双活性位点。本发明催化剂表现出了优异的丙烷催化氧化性能和抗硫性能。
南京工业大学 2021-01-12
CO2资源化利用合成DMF技术
上海交通大学 2021-04-11
从合成革废水中回收DMF技术
在湿法聚氨酯合成革生产过程中,产生大量的合成革废水,其中含有约10~15%的二甲基 甲酰胺(DMF)。目前国内大都采用精馏法回收废水中的DMF,即以蒸发大量的水分的方法回收DMF。采用精馏法回收DMF耗能高,以精馏15m3/h的处理量,需耗标准煤约1.1吨。由于耗煤量高,由此产生的二氧化碳及二氧化硫的排放量也大,同时在回收过程中,由于DMF的水解会产生二甲氨臭味。 从合成革废水回收DMF技术采用萃取-精馏以及吸附-热解析方法,并采用高效新型的萃取设备,常压萃取,精馏分离溶剂及DMF,并以吸附-热解析处理使水得到重新利用。选择了具有较低汽化潜热的溶剂作为萃取剂,设计高效新型的涡轮萃取塔,使DMF的回收率达到98%以上,DMF的纯度达到99.5%;采用吸附-热解析使废水重新得到利用。 技术先进性: 1、萃取-精馏法能耗低,仅为单塔精馏的25%。可大大减少煤耗、二氧化碳及二氧化硫的排放; 2、萃取-精馏法不产生二甲氨臭味; 3、废水充分得到循环利用; 4、不产生新的污染。 技术创新点: 1、采用高效新型的萃取设备,使萃取效率大大提高,且能耗可降低60%以上; 2、回收的DMF纯度高,可循环使用; 3、废水经处理后可回收利用。 该技术可广泛用于湿法聚氨酯生产合成革领域。
华东理工大学 2021-02-01
高性能多官能度可控合成和应用
环氧树脂具有良好的耐腐蚀性、固化收缩率低、机械性能和电性能优异等特点,因而广泛用于涂料、胶黏剂、复合材料(^及电子封装材料等领域。然而传统双酷A型环氧材料存在质脆、耐热性不足和使用温度低等问题,限制了它的应用。针对上述问题,本项目的研究工作主要从分子设计出发制备了一系列结构可控的多官能环氧树脂,FF其中包括超支化环氧聚合物W及四官能度环氧树脂,并将它们添加到双酷A型环氧树脂(DGEBA)中改性。经超支化环氧聚合物改性后,FF材料的拉伸强度、冲击强度及玻璃化转变湿度(Tg)等性能得到同FF时改善;经四官能度环氧树脂改性后,材料能够在Tg大于250°C的同FF时还兼具优异的强度和初性。基于这些改性效果,深入研究了结构与FF性能的关系,并讨论了改性机理。本项目的主要内容如下: 提出了一种超支化可控聚合的新方法,即利用竞争反应得到分子量可控及支化度不变的超支化聚合物。制备了一种可控Tg的超支化聚合物体系。利用竞争聚合反应制备了端基为环氧基的聚厳型超支化聚合物EHBPE。利用竞争反应原理制备出四种不同结构的超支化环氧聚合物。制备了一种髙性能的环氧均聚材料。制备了一系列新结构四官能度环氧树脂。
北京化工大学 2021-02-01
合成气高选择性制取烯烃
烯烃作为化工领域的核心分子,是合成纤维橡胶塑料等重要材料的单体,属于一类重要的高附加值化工原料。工业上的烯烃主要来源于石脑油的裂解。近年来,随着石油资源的日益减少和C1化学的迅速发展,开发从合成气直接制备烯烃的反应路径来替代传统的石化路线具有十分重要的意义。 传统合成气转化路径中约50%CO转化成了CO2和CH4等温室气体副产物,碳原子利用效率低下,严重降低了该路径的能源和经济效益。如何高效降低该过程中CO2和CH4副产物的生成、提高特定燃料产品的选择性在国际能源化工界一直是巨大挑战。 武汉大学定明月教授团队通过将碳化铁纳米晶体包裹在疏水性无定形SiO2壳中,开发出一种具有优异疏水性的核-壳型FeMn@Si催化剂。通过给催化剂包裹一层“疏水铠甲”,从而实现了56%的高CO转化率和13%的低CO2选择性,烯烃收率高达36.6%。核层碳化铁活性相与壳层疏水基团的高效协同,将能拓展出一系列新型的复合催化剂,通过抑制高耗能的水煤气变换反应,大幅度降低合成气转化过程中的CO2排放,显著提高碳原子利用效率,有望实现合成气更高效、更经济制取烯烃、汽油、芳烃、航油等各种高附加值化学品。该研究成果发表在《Science》期刊上,同期《Science》期刊发表了亮点评论文章,高度评价了该工作,认为该工作对于实现“碳达峰、碳中和”目标提供了新的解决方案。 合成气在疏水性FeMn@Si催化剂上高效制取C2+烯烃
武汉大学 2021-05-12
首页 上一页 1 2
  • ...
  • 48 49 50
  • ...
  • 432 433 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1