高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
废纸及生物质纤维高效综合利用技术
1 成果简介 生物质材料是我国战略性新兴材料产业和生物质产业发展的重要领域,利 用丰富的生物质资源开发环境友好和可循环利用的生物基材料,最大限度地利367 用纸包装废弃物和农业废弃物,制备的材料用以替代木材和黏土等材料,对于 发展循环经济、建设资源节约型和环境友好型社会具有重大意义。 本课题利用废纸、黏合剂和生物质纤维原料(各类农作物秸秆粉末等)采 用挤出法加工一种一定截面形状的型材,可进行多种后期加工,可制成包装构 件、包装型材和轻质墙体材料等,生产工艺先进,技术方案新颖,生产效率 高。 2 关键技术 项目成果突破的关键技术包括: (1)基于挤出工艺的原材料配方研究。通过配方和工艺参数研究,解决了 一般生物质材料难以挤出加工的瓶颈,实现了连续挤出加工。形成配方方案一 套; (2)基于废纸和生物质材料的型材制备技术方案研究。开发完成主要技术 装备方案,设计了实验室条件下的成型模具一套,可较好实现材料制备。相关 设备方案经细化和放大即可实现工业化生产; (3)为满足挤出制品后期加工的要求,开发了一种复配表面施胶剂,可用 于制品的表面处理以及覆面材料的粘合,以利于加工制造外观美观、综合性能 优越的型材成品。形成专利配方一套。 3 知识产权及项目获奖情况; 获得发明专利 3 项: ZL 201410097780.6,环保生物质材料及其制备方法; ZL 2012105235432,植物纤维发泡包装板材及其加工工艺和模具; ZL 201310583602.x,复配表面施胶剂及其制备方法和应用。 4 项目成熟度 该项目已完成实验室成果,成熟度 85%。 5 投资期望及应用情况 该项目期望以技术转让、合作开发方式进行进一步转化,预期投资额 500- 700 万元(不含厂房)。其项目成果、技术方案在国内包装废弃物综合利用、农 作物秸秆高效利用方面属领先地位。 项目产品属材料制备基础技术;可用于不同生物质原料的连续式挤出加工 处理,后续跟进各种最终加工工艺以制备不同生物质基型材。预期应用领域包 括包装辅材、建材、家具。
江南大学 2021-04-11
废石油加氢催化剂资源化利用技术
全球每年废石油加氢催化剂的产量约 15~17 万吨,其中富含钼、钨、钴、镍、钒等战略金属。本团队研发了废催化剂中油的高效脱除与回收技术,实现废催化剂中高含量油的资源化利用。开发废催化剂火法还原熔炼富集金属-多金属锍湿法提取技术,突破废催化剂组分复杂、有价金属难以提取的难题。基于元素的地球化学成矿原理,开发催化剂浸出液中钨、钼、钒的高效分离技术。通过上述技术的耦合,形成废石油加氢催化剂资源化利用技术集成。通过本技术,废加氢催化剂中油的脱除率大于 80%,并以有机油和可燃性气体形式回收。催化剂中 Ni、Co、Mo、W、V 总回收率大于 90%,其中,镍以硫酸镍产出、钴以硫酸钴产出、钒以钒酸铵产出、钨钼以混合盐产出。所产生的废渣达到无害化标准,烟气经处理后可达标排放。
北京科技大学 2021-04-13
矿井通风瓦斯催化燃烧及其热能梯级利用技术
该技术利用催化燃烧和气固换热的原理,将通风瓦斯催化燃烧并将其热能进行梯级利用,不仅对保障我国的能源安全以及环境保护起到不可忽视的作用,同时还能带动我国相关产业技术的发展,具有重大的战略意义。该技术可以广泛适用于包括煤矿通风瓦斯,天然气、沼气、石油油层气、高炉煤气以及钢铁和石化生产中的可燃废气在内的超低浓度可燃气体,具有广泛的实用性和广阔的市场应用前景。
西安交通大学 2021-04-11
废水电解脱盐及其综合利用技术
化工、冶金、制药、印染、采油、热电、生物发酵等行业在生产过程都会产生大量的含盐 废水。含盐废水直接排放不仅成严重的水体污染,而且浪费了大量可再利用的资源,也降低了 企业的经济效益和资源的利用率。随着国家对三废排放要求越来越严格,以及日益凸显出来的 环境污染问题,如何处理这一类型的废水一直是企业可持续发展面临的难题。 针对此难题,我们开发出高效的电脱盐器,不需要耗费大量蒸汽将其蒸发浓缩结晶制成低 价值或无价值的固体盐,而是将回收的浓盐水直接通过离子膜电解生产出较高价值的液体酸和 液体碱。实现含盐废水处理技术由单纯无效益投入转为有效益产出,让企业实现经济效益和社 会效益双丰收,提高企业处理废水的积极性和主动性。 例如某冶炼企业原废水中含有约70g/L的Na2SO4和约20g/L的NaCl。我们首先除杂净化废 水,净化水进入电脱盐器,脱盐后淡水中盐含量小于5g/L返还车间再用,富集浓水中盐含量达 到200g/L后送入电解槽制备的25%硫酸和25%烧碱,硫酸和烧碱产品质量达到工业级指标。
华东理工大学 2021-04-13
重金属污染土壤的农业安全利用技术
已有样品/n针对农田重金属镉铅污染形势严峻、治理难度大等问题,以保障农产品质量安全为核心,按照“轻度污染肥料改良-中度污染钝化降活-重度污染断链改制”的总体研究思路,根据土壤镉铅污染程度及其变化动态、作物吸收/转运特点和重度污染农田农用途径等开展相关技术攻关与产品研发,研究建立了镉铅污染农田原位钝化修复与安全生产技术体系。
中国科学院大学 2021-01-12
牡蛎壳规模化综合开发利用技术
可以量产/n牡蛎是一种著名的海产经济贝类,具有很高的营养价值,且资源丰富,产量在贝类中居首位。大量牡蛎加工厂和人们对牡蛎的直接食用都会产生大量牡蛎壳,这些牡蛎壳占牡蛎总重的70%以上,牡蛎壳随地丢弃,堆积如山,既污染环境,又造成了资源浪费。牡蛎壳成份中90%以上是碳酸钙、多种微量元素及少量有机质,在医药、医疗保健品开发和制备各种添加剂等方面具有很大应用价值。本项目对牡蛎壳进行规模化高值开发利用,对现有的牡蛎壳大规模利用技术进行集成和更深入的开发。以牡蛎壳为主要原料,针对海岸带盐碱地,开发盐碱土壤修复
中国科学院大学 2021-01-12
牛粪资源化处理及循环利用技术研究
上海交通大学 2021-04-13
废纸及生物质纤维高效综合利用技术
生物质材料是我国战略性新兴材料产业和生物质产业发展的重要领域,利 用丰富的生物质资源开发环境友好和可循环利用的生物基材料,最大限度地利用纸包装废弃物和农业废弃物,制备的材料用以替代木材和黏土等材料,对于 发展循环经济、建设资源节约型和环境友好型社会具有重大意义。 本课题利用废纸、黏合剂和生物质纤维原料(各类农作物秸秆粉末等)采 用挤出法加工一种一定截面形状的型材,可进行多种后期加工,可制成包装构 件、包装型材和轻质墙体材料等,生产工艺先进,技术方案新颖,生产效率 高。 2 关键技术 项目成果突破的关键技术包括: (1)基于挤出工艺的原材料配方研究。通过配方和工艺参数研究,解决了 一般生物质材料难以挤出加工的瓶颈,实现了连续挤出加工。形成配方方案一 套; (2)基于废纸和生物质材料的型材制备技术方案研究。开发完成主要技术 装备方案,设计了实验室条件下的成型模具一套,可较好实现材料制备。相关 设备方案经细化和放大即可实现工业化生产; (3)为满足挤出制品后期加工的要求,开发了一种复配表面施胶剂,可用 于制品的表面处理以及覆面材料的粘合,以利于加工制造外观美观、综合性能 优越的型材成品。形成专利配方一套。 3 知识产权及项目获奖情况; 获得发明专利 3 项: ZL 201410097780.6,环保生物质材料及其制备方法; ZL 2012105235432,植物纤维发泡包装板材及其加工工艺和模具; ZL 201310583602.x,复配表面施胶剂及其制备方法和应用。 4 项目成熟度 该项目已完成实验室成果,成熟度 85%。 5 投资期望及应用情况 该项目期望以技术转让、合作开发方式进行进一步转化,预期投资额 500- 700 万元(不含厂房)。其项目成果、技术方案在国内包装废弃物综合利用、农 作物秸秆高效利用方面属领先地位。 项目产品属材料制备基础技术;可用于不同生物质原料的连续式挤出加工 处理,后续跟进各种最终加工工艺以制备不同生物质基型材。预期应用领域包 括包装辅材、建材、家具
江南大学 2021-04-13
高能量利用率的爆炸焊接技术
成果创新点 主要技术创新路径:传统爆炸焊接的装置,其上表面 裸露在空气中。而本技术在炸药上表面对称地放置与炸药 下表面一致的复板和基板,整体作为一个单元;为避免上 半部分抛掷出去,因而重复该单元,让炸药冲击互相约束; 最顶部不能再铺设复板与基板,因而以胶体水替代,能提 高其能量利用率。 关键技术指标:各层炸药同步起爆、间隙及炸药配方 和用量; 核心解决问题、核心优势:解决了
中国科学技术大学 2021-04-14
高能量利用率的爆炸焊接技术
主要技术创新路径:传统爆炸焊接的装置,其上表面裸露在空气中。而本技术在炸药上表面对称地放置与炸药下表面一致的复板和基板,整体作为一个单元;为避免上半部分抛掷出去,因而重复该单元,让炸药冲击互相约束;最顶部不能再铺设复板与基板,因而以胶体水替代,能提高其能量利用率。 关键技术指标:各层炸药同步起爆、间隙及炸药配方和用量; 核心解决问题、核心优势:解决了爆炸焊接工业生产中的成本和效率问题,实验证明五层的该结构可以提升能量利用率 63%,且该技术多块板一次成型,大大提高了工作效率;
中国科学技术大学 2023-05-16
首页 上一页 1 2
  • ...
  • 11 12 13
  • ...
  • 731 732 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1