高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
医药等生产过程废液中低含量有机溶剂的资源化技术
在医药、食品、纺织、新材料等生产过程,往往采用甲醇、乙醇、丙酮、醋酸乙酯、醋酸丁酯、正丁醇、异丙醇、氯仿等作为反应和萃取分离的溶剂。在生产过程排出的废液中不可避免地有这些有机溶剂的残留,少则千分之几,多则百分之几(有些为混合溶剂)。这些低浓度的有机溶剂若不加以回收直接排入生化池处理,既浪费资源又加重处理成本。 为此,本团队研发了低含量有机溶剂的资源化技术:m-HCAD工艺。其主要思路是将废液中低浓度有机溶剂资源化。
南京大学 2021-04-14
畜禽粪便无害化处理及有机肥加工技术和设备
一、成果简介 利用农作物秸秆和畜禽粪便,进行高温堆肥生产有机肥,或者对堆肥产品进一步制成各种作物专用有机无机复混合肥,以便用于非有机食品或绿色食品(A级)生产基地。利用具有耐高温、分解速度快的特异发酵微生物种群和快速堆肥发酵技术,利用当地丰富的农作物秸秆、畜禽粪便资源和廉价的国产设备及当地广阔的市场,生产营养丰富、兼有长效有机肥和速效化肥特点的生物有机复混肥料。既可以将废弃物资源充分利用,治理污染,改善生态环境,促进农业、养殖业发展,符合国家可持续发
中国农业大学 2021-04-14
堆肥发酵接种剂及规模化生物有机肥产业化
一、技术(成果)简介 本项目针对当前我国城镇普遍存在的有机固体废弃物的无害化处理展开,重点通过开发一种微生物发酵接种剂,开展城市污泥、农村畜禽粪便的好氧堆肥快速生物处理,这对于保障生态环境,推动有机固体废弃物的资源化利用以及大批生物有机肥企业的发展,有着重要的意义。 项目已通过教育部科技成果鉴定,获得国家发明专利,主要技术成果包括: 1、完成了7种不同功能微生物菌株的筛选与驯化,首次构建并研制成功稳定的堆肥接种剂优化组合,
中国农业大学 2021-04-14
造纸黑液中有机质提取与废水低成本处理工艺
成果简介造纸工艺中的高浓度废水成分复杂、 有机质极高, 难以达标处理, 导致部分中小型企业直接排放, 造成极大的环境污染问题。 所提出的复配混凝沉降+空气催化氧化+两级电催化氧化处理技术, 可以实现有机质的有效提质, 达成水资源和有机质的返生产循环消纳或是商品化高效利用目的。成熟程度和所需建设条件已完成实验室研发, 如下图所示; 在现有废水处理设备基础上加以改进即可。
安徽工业大学 2021-04-14
多功能量子点-有机叠层发光二极管
提出了一种量子点-有机叠层发光二极管(LED)的新结构,实现了单颗LED发射红、绿、蓝、白及任意色彩的功能,有望取代传统红、绿、蓝LED,提高显示屏的分辨率及开口率。 量
南方科技大学 2021-04-14
污泥堆肥快速发酵及规模化生物有机肥产业化
一、成果简介 本项目针对当前我国城乡大量存在的市镇污泥,采用环境生物技术,开展好氧堆肥发酵快速处理,实现废物的循环利用,对于保障生态环境,推动有机固体污泥的资源化利用以及生物有机肥企业的发展,有着重要的意义。项目解决了传统污泥堆肥中堆肥时间长、养分损失大、臭味控制难以及规模化工业化生产水平落后等问题,堆肥周期从已往的35-45天缩短到10-15天,堆肥养分损失减少了30%以上,堆肥臭味得到明显控制,有关成果已授权专利4项,达到国际先进水平。
中国农业大学 2021-04-14
西安交大科研人员在有机绝缘驻极体薄膜研究领域取得重要进展
场效应晶体管(Field Effect Transistor, FET)是芯片与集成电路的基本单元,由金属电极、半导体电荷传输层和绝缘电介质层三部分组成。近年来,电气设备和电子产品小型化、轻量化、智能化的发展趋势对FET等基础电学元器件提出了向高性能、微型化、高频化和柔性化发展的需求。进入21世纪后,随着多种具有共轭π键体系聚合物和小分子的合成,有机半导体材料的优良电荷传输特性已被较为充分地发掘,分子结构创新的匮乏导致半导体材料电荷传输性能难有跨越式的提升。基于这种现状,西安交通大学鲁广昊教授课题组将研究重点转向绝缘电介质层,通过充分挖掘绝缘介质带电特性形成可控的栅极补偿电场,实现FET半导体层电荷传输的调控并提高器件性能。近日,前沿院鲁广昊教授课题组与电气学院李盛涛教授课题组、理学院张志成教授课题组、中科院长春应用化学研究所崔冬梅研究员课题组开展合作,通过自由基聚合合成了一种新型绝缘聚合物分子:无规4-氟代聚苯乙烯(Poly(4-fluorostyrene),FPS)。该聚合物具有较高的深电荷陷阱密度、高击穿场强、高热稳定性和疏水性,可实现高度稳定的驻极体。以FPS薄膜作为栅极介电层,并以C12-BTBT作为半导体层制备的有机场效应晶体管具有高达11.2 cm2·V-1·s-1的场效应迁移率,高达107的开/关比和较小的阈值电压。与广泛使用的聚苯乙烯相比,FPS的电子和空穴陷阱密度及陷阱能级均有所上升,带来6.8×1012cm-2的高带电量。利用FPS制备的OFET存储器件可在大于100 V的宽存储窗口下工作,并具有在空气环境中大于一个月的存储稳定性。 该研究成果以“Soluble Poly(4-fluorostyrene): a High-performance Dielectric Electret for Organic Transistors and Memories”为题发表在国际材料领域权威期刊Materials Horizons上(影响因子:14.356)。该文第一作者为西安交大前沿院助理教授朱远惟博士,通信作者为前沿院鲁广昊教授、电气学院李盛涛教授和中科院长春应化所刘波副研究员。该工作得到了国家自然科学基金、陕西省自然科学基础研究计划、国家博士后基金、电力设备电气绝缘国家重点实验室中青年基金及校基本科研业务费的资助。论文链接为:https://pubs.rsc.org/en/content/articlelanding/2020/mh/d0mh00203h/unauth#!divAbstract课题组网站:http://gr.xjtu.edu.cn/web/guanghaolu/home
西安交通大学 2021-04-11
过共晶铝硅合金发动机缸套挤压铸造成形技术
1. 成果简介预制缸套然后铸造或装配是采用铝合金制造汽车发动机缸体的一种主要成形工艺。传统的缸套都是用铸铁制造,铸铁耐磨性好,但热导率较低,铝合金导热率是铸铁的 4 倍,采用铝合金制造缸套的优势是迅速将发动机燃烧产生的热量传递出去,避免机油焦化,从而显著提高发动机的升功率(功率密度)。过共晶 Al-Si 合金具有热膨胀系数小、耐磨性好、热导率高、高温性能好等特点,是制造发动机缸套的理想材料。图 1 挤压铸造件              图 2 机加工后零件                 图 3 初生硅和共晶硅分布 采用常规铸造方法成形过共晶铝硅合金,疏松倾向大,强度和韧性低,而且显微组织中初生硅的尺寸难以控制。挤压铸造是液态金属在较高外加压力(百兆帕)作用下凝固成形的一种先进铸造工艺,铸件在低速下充型,高压下凝固,内部致密,组织细小,并能通过热处理强化。 清华大学成功开发了过共晶铝硅合金缸套挤压铸造成形技术,具有非常好的发展潜力和产业化应用前景。2 应用说明采用铝合金制造发动机缸套甚至全铝发动机缸体是国外主要汽车企业开发高性能发动机的重要技术之一。采用喷射沉积加挤压或锻造工艺已有相关产品,但由于工序多、流程长造成生产率低、成本高。清华大学开发的过共晶铝硅合金缸套挤压铸造成形技术具有短流程、近净成形、优质、高效、节能等优点,目前正在与汽车发动机制造企业合作,进行技术评价与应用。 申请国家发明专利 1 项。3 效益分析缸套作为汽车发动机生产中的一个重要配件,其用量大,产品和技术相对独立,原材料充足,设备投资小,适于中小企业给发动机厂配套,特别是适合于已经在给发动机厂配套铝合金活塞等部件的企业发展这一技术和产品,易于在现有客户渠道基础上丰富产品种类,同时较高的技术含量可以避免被简单模仿和恶性竞争。
清华大学 2021-04-13
基于硅基悬臂梁T型结直接加热式毫米波信号检测仪器
本发明的基于硅基悬臂梁耦合T型结直接加热式毫米波信号检测仪器是由传感器、模数转换和液晶显示三大模块组成,传感器模块是由悬臂梁耦合结构、T型结直接加热式微波功率传感器和开关构成,衬底材料为高阻Si,功率通过输入端口对应的CPW信号线终端的直接加热式微波功率传感器进行检测;频率检测通过利用直接加热式微波功率传感器测量两路在中心频率处相位差为90度的耦合信号的合成功率实现;相位检测通过将两路在中心频率处相位差为90度的耦合信号,分别同两路等分后的参考信号合成,同样利用直接加热式微波功率传感器检测合成功率,
东南大学 2021-04-14
硅基未知频率缝隙耦合式T型结直接式毫米波相位检测器
本发明的硅基未知频率缝隙耦合式T型结直接式毫米波相位检测器是由共面波导传输线、缝隙耦合结构、移相器、单刀双掷开关、T型结功分器、T型结功合器以及直接式热电式功率传感器所构成,整个结构基于高阻Si衬底制作,一共有四个缝隙耦合结构,上方的两个缝隙耦合结构实现信号的频率测量,下方的两个缝隙耦合结构实现信号的相位测量,在前后缝隙之间有一个移相器;T型结功分器和T型结功合器是由共面波导传输线、扇形缺陷结构和空气桥组成;直接式热电式功率传感器由共面波导传输线、两个热电偶和隔直电容所构成,热电偶是由金属臂和半导体
东南大学 2021-04-14
首页 上一页 1 2
  • ...
  • 43 44 45
  • ...
  • 54 55 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1