高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
新型橡胶材料一一杜仲胶
内容介绍: 杜仲胶与天然橡胶、丁苯橡胶、顺丁橡胶、氯丁橡胶、丁基橡胶、乙 丙橡胶等之一、二共混、硫化得到硫化胶,其滚动阻力和生热在已知轮 胎用胶中是最低的。通过改变配方中杜仲胶的含量,可以获得性能优异 的弹性体。该弹性体最大的特点是:滚动阻力小、动态压缩生热低、耐 疲劳性能优异,同时耐磨性和抗湿滑性也很好,具有轮胎行驶性能的较 佳综合平衡,是发展航空、越
西北工业大学 2021-04-14
系列改性瓜尔胶制备技术
对瓜尔胶原粉进行改性,制得系列改性瓜尔胶,产品具有良好的水溶性、增稠性、配伍性、化学稳定性、耐温性,水不溶物含量少特点,可作为增稠剂、润滑剂、增强剂用于油田、印染、造纸和水处理等行业。用于印染,无论在柔软度还是渗透性方面都可与海藻酸钠糊料媲美,且与单一羟丙基产品相比,其印花柔软性能好,得色效率好,成糊率高。瓜尔胶-壳聚糖天然物絮凝剂具有高效、绿色、经济、复合等特点,该产品对废水具有脱色、除浊、降低 COD 效率高等优点。 关键技术 传统瓜尔胶改性方法中使用环氧烯类醚化剂毒性大,而使用干法或半干法类制备工艺虽过程简单,投资较少,但产物水不溶物含量高,流动性差。本项目关键技术在于使用有机溶剂一步法得到羧甲基羟乙基瓜尔胶。瓜尔胶-壳聚糖复合絮凝剂制备方法是以瓜尔胶和壳聚糖为原料,以静电吸附为原理,直接共混制备、交联等改性,发挥两者协同作用,各自之间取长补短,制备出一种高效的天然高分子絮凝剂。制备方法简单,效率高,杂质极少。制备过程不需要使用环氧烯类有毒物质,原料易得且安全性好。 目前已具有羧甲基羟乙基瓜尔胶、瓜尔胶-壳聚糖复合絮凝剂、羟乙基瓜尔胶、羧甲基瓜尔胶、阳离子瓜尔胶等各类制备技术。 知识产权及项目获奖情况 一种瓜尔胶-壳聚糖天然絮凝剂及其制备方法 201610054789.8 一种羧甲基羟乙基瓜尔胶的制备方法 201510066654.9 项目成熟度 试生产或批量生产。 投资期望及应用情况 技术转让或共同开发。产品已用于无锡某公司造纸、食品和水处理等领域。 
江南大学 2021-04-13
低温大直径磁性液体密封装置
本发明属于机械工程密封技术领域,特别适用于军工、船舶、航海、航天航空等领域中温度在-40℃下,密封轴径大于 160 mm 的真空密封或正压密封。 本发明所要解决的技术问题是,现有磁性液体密封的方法不能适用于低温大直径条件,因此,提供一种低温大直径磁性液体密封装置,使得低温条件下大直径密封件转动扭矩从 7kg•m 降到 3kg•m,满足实际需要。 本发明的技术方案:根据低温、大直径条件来设计磁性液体密封结构和选择磁性液体的物理参数。 低温大直径磁性液体密封装置包括:小端盖、轴承、极靴、外套、轴套、永磁铁、磁性液体、橡胶密封圈、调节垫片、大端盖、螺钉。安装时先将橡胶密封圈嵌入极靴中, 然后把轴承、极靴、永磁铁、极靴、轴承依次紧靠外套内凸台右侧;将磁性液体均匀地注入轴套上的密封齿后,装入上面已装好的轴承、极靴、永磁铁、极靴、轴承内部,用螺钉将小端盖固定在轴套上,接着将调节垫片和大端盖依次装在轴承右侧,最后用螺钉相连外套和大端盖,这样小端盖、轴承、极靴、永磁铁、极靴、轴承、调节垫片、大端盖之间相互压紧,使密封装置轴向固定,从而磁性液体在磁场的作用下吸附在密封齿的间隙中,形成可靠密封。 本发明中使用磁性液体的基载液选用优质煤油或硅酸盐脂类或二脂类,它们在-40℃时仍具有良好的流动性,磁性液体中磁性颗粒的粒径小于 5 nm,满足低温使用要求。 本发明的有益效果是,由于轴套上设有密封齿及优化的齿形参数,选用优质煤油或硅酸盐脂类或二脂类的基载液和磁性颗粒的粒径小于 5 nm,实现了-40℃时的大直径磁性液体密封,使转动扭矩降低,泄漏率低于 10-11pal·m3/s,使用寿命长,而且装配方法简单,克服了原有密封的弊端。
北京交通大学 2021-02-01
高温磁性液体密封防滴液装置
该装置属专利技术,主要应用与机械工程磁性液体密封领域,特别适用于高温条件下磁性液体真空密封。 很多场合下磁性液体密封装置工作在温度较高的情况下,使得永磁体的磁性下降,磁性液体也随温度的升高粘度降低、磁性性能下降,导致在密封过程中少量的磁性液体脱离极靴的吸附沿着导磁套滴入真空室,对真空室造成污染。
北京交通大学 2021-02-01
单体液压支柱密封质量检测系统
单体液压支柱密封质量检测系统由打压支架、压力盒、压力传感器、信号传输线缆、信号调理和接线箱、多功能数据采集板、计算机、打印机和检测软件等组成,可同时对15-128个支柱的密封质量进行检测。具有对单体液压支柱压力数据的采集、存贮和管理功能。计算机软件是在WINDOWS下编写的,界面友好,操作简便。检测系统5万元-20万元,利润15-25%。不同配置的单体液压支柱密封质量检测系统已实施100多套,分布在山东、山西、陕西、河南、黑龙江、河北、越南等地
江苏师范大学 2021-04-11
一种端面密封型转阀
一种端面密封型转阀,属于换向阀,解决现有转阀无法对运动 中的摩擦磨损及温度变化进行补偿,在中高压下操纵力较大等问题。 本发明包括阀体、底盖、阀芯、推力球轴承、压紧螺塞、减速电机, 底盖与阀体螺纹连接,阀芯与阀体间隙配合,压紧螺塞与阀体螺纹配 合,阀芯与压紧螺塞之间装有推力球轴承,减速电机一端嵌入阀体并 通过螺钉连接固定,减速电机的电机轴与阀芯配合。本发明结构紧凑, 能够保证液压系统的可靠换向,对环境温度及工作压力的适应性强, 对运动副长期工作所带来的摩擦磨损具有良好的自补偿性,密封性能 可靠,独立阀
华中科技大学 2021-01-12
无脂密封易再生干燥器
本实用新型公开了一种无脂密封易再生干燥器,包括罐盖与罐主体,还包括扣片及密封圈;罐主体顶部设置有用于放置密封圈的罐主体密封圈槽;所述罐盖下边沿设置有用于压紧密封圈的罐盖密封凸起;罐盖侧壁设置有至少三个罐盖扣块,罐主体顶部侧壁对应设置有与罐盖扣块配合的罐主体扣块,在其中任意一个罐主体扣块的底部设置有与罐主体内外部相连通的通气孔;扣片分别与罐盖扣块及罐主体扣块扣合;罐主体内设置有隔板。采用该无脂密封易再生干燥器,能实现使用干净、方便的扣合方式密封,且无需使用凡士林等矿脂。
浙江大学 2021-04-13
低温大直径磁性液体密封装置
本发明属于机械工程密封技术领域,特别适用于军工、船舶、航海、航天航空等领域中温度在-40℃下,密封轴径大于160 mm的真空密封或正压密封。 本发明所要解决的技术问题是,现有磁性液体密封的方法不能适用于低温大直径条件,因此,提供一种低温大直径磁性液体密封装置,使得低温条件下大直径密封件转动扭矩从7kg•m降到3kg•m,满足实际需要。 本发明的技术方案:根据低温、大直径条件来设计磁性液体密封结构和选择磁性液体的物理参数。 低温大直径磁性液体密封装置包括:小端盖、轴承、极靴、外套、轴套、永磁铁、磁性液体、橡胶密封圈、调节垫片、大端盖、螺钉。安装时先将橡胶密封圈嵌入极靴中,然后把轴承、极靴、永磁铁、极靴、轴承依次紧靠外套内凸台右侧;将磁性液体均匀地注入轴套上的密封齿后,装入上面已装好的轴承、极靴、永磁铁、极靴、轴承内部,用螺钉将小端盖固定在轴套上,接着将调节垫片和大端盖依次装在轴承右侧,最后用螺钉相连外套和大端盖,这样小端盖、轴承、极靴、永磁铁、极靴、轴承、调节垫片、大端盖之间相互压紧,使密封装置轴向固定,从而磁性液体在磁场的作用下吸附在密封齿的间隙中,形成可靠密封。 本发明中使用磁性液体的基载液选用优质煤油或硅酸盐脂类或二脂类,它们在-40℃时仍具有良好的流动性,磁性液体中磁性颗粒的粒径小于5 nm,满足低温使用要求。 本发明的有益效果是,由于轴套上设有密封齿及优化的齿形参数,选用优质煤油或硅酸盐脂类或二脂类的基载液和磁性颗粒的粒径小于5 nm,实现了-40℃时的大直径磁性液体密封,使转动扭矩降低,泄漏率低于10-11pal·m3/s,使用寿命长,而且装配方法简单,克服了原有密封的弊端。
北京交通大学 2021-04-13
高温磁性液体密封防滴液装置
该装置属专利技术,主要应用与机械工程磁性液体密封领域,特别适用于高温条件下磁性液体真空密封。 很多场合下磁性液体密封装置工作在温度较高的情况下,使得永磁体的磁性下降,磁性液体也随温度的升高粘度降低、磁性性能下降,导致在密封过程中少量的磁性液体脱离极靴的吸附沿着导磁套滴入真空室,对真空室造成污染。 技术特点: 它能够有效地收集滴落的磁性液体。 由于导磁套的末端装有环形永磁体,将滴落的磁性液体有效的吸附在永磁体上,达到防止磁性液体污染真空室的目的。本发明结构简单,实用方便。
北京交通大学 2021-04-13
一种端面密封型转阀
一种端面密封型转阀,属于换向阀,解决现有转阀无法对运动中的摩擦磨损及温度变化进行补偿,在中高压下操纵力较大等问题。本发明包括阀体、底盖、阀芯、推力球轴承、压紧螺塞、减速电机,底盖与阀体螺纹连接,阀芯与阀体间隙配合,压紧螺塞与阀体螺纹配合,阀芯与压紧螺塞之间装有推力球轴承,减速电机一端嵌入阀体并通过螺钉连接固定,减速电机的电机轴与阀芯配合。本发明结构紧凑,能够保证液压系统的可靠换向,对环境温度及工作压力的适应性强,对运动副长期工作所带来的摩擦磨损具有良好的自补偿性,密封性能可靠,独立阀座方便维修更换;
华中科技大学 2021-04-14
首页 上一页 1 2
  • ...
  • 7 8 9
  • ...
  • 64 65 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1