高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
兴奋性稳态调控的分子机制
团队合作发现了兴奋性稳态调控的分子机制。课题组使用钠通道阻断剂(TTX)阻断动作电位以模拟神经元兴奋性的长期降低。在TTX撤除后,动作电位的持续时间显著延长,神经元兴奋性代偿性增加,提示神经元出现了兴奋性稳态调控现象。机制研究发现,上述兴奋性稳态调控是由于Nova-2介导的钾通道(BK通道)mRNA选择性剪切降低所致。值得注意的是,该研究发现长时间TTX处理神经元时,虽然神经元胞体不会产生动作电位,但是神经元突触却产生了明显去极化,足以激活突触部位的L-型钙通道。后者通过其下游的钙调蛋白激酶(βCaMKK和CaMKIV)将信息传递入细胞核,引起Nova-2磷酸化并向核外迁移,导致其介导的BK通道mRNA选择性剪切下降 上述研究为近30年前提出的“稳态反馈环路”假说提供了完整证据(图2)。考虑到该信号通路中多个分子(AMPA受体、L-型钙通道、钙调蛋白激酶家族、Nova-2、BK通道)与自闭症、精神分裂症、抑郁症等神经/精神疾病密切相关,提示该通路的异常可能是上述疾病发生的重要机制。
中山大学 2021-04-13
揭示光系统II生物发生调控机制
 通过系统筛查,研究人员鉴定到一个高等植物特有的PSII生物发生调控因子——LPE1(LOW PHOTOSYNTHETIC EFFICIENCY 1)。通过生理学、分子生物学、生物化学和遗传学等手段研究发现,LPE1基因突变导致PSII活性剧烈降低,PSII生物发生严重受阻;同时光PSII核心蛋白D1的合成明显受损。值得注意的是,LPE1编码一个叶绿体PPR蛋白,直接与D1编码基因psbA mRNA的5'UTR结合,从而招募核糖体并启动D1蛋白的翻译。更重要的是,LPE1同时与已知的D1翻译因子HCF173(HIGH CHLOROPHYLL FLUORESCENCE 173)互作,促使HCF173与psbA mRNA结合,协同参与调控PSII生物发生。       更有趣的是,该研究发现光可以诱导D1蛋白的表达,并且主要在翻译水平实现控制。光诱导结合实验分析发现,光可以促进LPE1与psbA mRNA的5'UTR结合。进一步研究发现,光可能通过改变叶绿体中的氧化还原状态,调节LPE1的分子内二硫键及蛋白结构,从而影响其与psbA mRNA的结合活性。       该工作首次鉴定到高等植物中D1翻译调控过程中psbA mRNA的直接结合因子,揭示了PSII生物发生的光调控机制,对于理解植物光合作用与生长发育调控机理具有重要的理论价值。
中山大学 2021-04-13
在真核生物的翻译调控机制
发现20年以来的第一个晶体结构,证实SLFN是一个新型的核酸内切酶家族,通过破坏蛋白翻译机器调控真核生物的翻译进程,能够有效控制HIV病毒的复制和包装。课题组人员还提出了对真核生物在应激状态下翻译调控机制的见解,并进一步阐明了SLFN家族可能的抗肿瘤机制,为SLFN的临床应用奠定了基础。 课题组解析了SLFN13的N端结构域(SLFN13-N)的三维晶体结构,揭示了其独特的U型枕样的类二聚体折叠,可分为N端部分(N-lobe),C端部分(C-lobe)和中间连桥部分(bridge domain,BD)。SLFN13-N的U型凹槽可以识别tRNA/rRNA分子碱基配对的RNA结构,由三个酸性氨基酸组成的催化三联体执行酶切。体外酶切实验发现SLFN13可以在tRNA的3’端酶切11 nt,即tRNA 3’接收臂的末端,这是真核生物中第一个被鉴定可以在该位置酶切的核酸内切酶。过表达后细胞质定位的SLFN13可以酶切细胞内的成熟的tRNA和rRNA,破坏蛋白质翻译机器,进而抑制细胞中的蛋白合成,降低细胞代谢水平。SLFN13还展现了酶活依赖的多阶段多层次的高效HIV病毒监管方式。因此,课题组将SLFN13命名为RNA酶S13。同时,研究人员提出了对真核生物翻译机制调控的见解,认为SLFN对肿瘤细胞增殖的抑制很可能是通过破坏细胞内蛋白翻译机器或调控其它关键核酸底物的活性进而调控细胞代谢水平来实现。
中山大学 2021-04-13
揭示特殊转录激活分子的机制
转录调控是细菌应对环境胁迫和病原菌缓解抗生素压力的重要手段,由细菌的转录核心机器 RNA 聚合酶和一系列转录起始 sigma 因子共同完成。在通常情况下,细菌的看家 sigma 因子(如大肠杆菌的 sigma 70 )负责大多数的基因表达,而在环境胁迫下, sigma S 则快速占据主导,并通过开启特定基因的表达来帮助细菌适应不利环境。与细菌的看家 sigma 因子相比, sigma S 的活性通常较低,其功能的发挥通常需要转录激活因子的协助,而 Crl 正是一种 sigma S 特异的转录激活因子。 此前,对于 Crl 激活转录的分子机制不甚清楚。在该研究中,合作者首先解析了 E. coli Crl 转录激活复合物的 3.8 Å 的冷冻电镜结构,该复合物包括了 E. coli 的 RNA 聚合酶、转录起始因子 sigma S 、 Crl 、以及启动子 DNA 。在该结构中, Crl 主要与 sigmaS 的 domain  2 相互作用,同时也与 RNA 聚合酶的最大亚基 bet a’ 有少许相互作用。与绝大多数传统的转录激活因子不同,电镜结构显示 Crl 并不结合启动子 DNA ,因此单从结构本身较难完全解释 Crl 对于 sigma S -RNAP 的转录促进活性。在此基础上,上科大免化所团队进一步利用氢氘交换质谱( HDX-MS )对该系统进行了深入研究。氢氘交换质谱的结果揭示, Crl 不仅直接结合 sigmaS  的 alpha2-alpha3 螺旋( Figure 1A ),还能够通过变构调节作用稳定 sigmaS 的  alpha4 、 alpha5 等多个结构单元( Figure 1A-C ),而这些结构单元的稳定将能够促进 sigma S 与 DNA 以及 sigma S 与 RNA 聚合酶之间的相互作用( Figure 1D )。基于以上数据,研究人员提出 Crl 通过特异性结合转录起始因子 sigma S ,稳定 sigma S 的活性构象,从而促进 sigmaS 与 RNA 聚合酶以及启动子 DNA 的结合组装,进而激活 sigma S-RNAP 介导的转录。这一机制在后续的功能实验中得到了进一步验证。该工作呈现了一种新的转录因子与 RNA 聚合酶的结合方式,揭示了一种新的细菌转录激活分子机制。
上海科技大学 2021-04-11
科技部党组书记、部长阴和俊《旗帜》撰文:优化重大科技创新组织机制
党的二十届三中全会提出“优化重大科技创新组织机制,统筹强化关键核心技术攻关”,这是健全科技管理体制、加快实现高水平科技自立自强的重要举措。
旗帜微平台 2025-03-12
一种用于陶瓷胶态成型的覆膜砂模具的制备方法
本发明属于无机非金属陶瓷制备领域,并公开了一种用于陶瓷 胶态成型的覆膜砂模具的制备方法,包括:构建覆膜砂模具三维模型 进行切片,根据三维模型切片数据进行增材制造制备覆膜砂模具初坯; 将覆膜砂模具初坯埋于玻璃微珠中,并置于烧结炉中进行烧结热处理; 将烧结热处理后的覆膜砂模具初坯置于硅溶胶溶液中浸渗,取出后置 于烘箱中干燥,得到覆膜砂模具;将陶瓷浆料注入到覆膜砂模具中, 然后置于烘箱中使浆料固化并干燥得到陶瓷干坯;将陶瓷
华中科技大学 2021-04-14
铝合金或镁合金薄壁复杂铸件用水溶性砂芯的制备方法
本发明公开了一种铝合金或镁合金薄壁复杂铸件用水溶性砂芯 的制备方法,包括:(a)在常温下将七水硫酸镁和等离子水配制成质量 百分比为 20%~30%的硫酸镁水溶液,然后将特定量的十八水硫酸铝 和添加剂加入至该硫酸镁水溶液中,并加热至 60℃~80℃制成复合粘 结剂;(b)将铸造原砂预混均匀后加入复合粘结剂,由此得到混合料芯 砂;(c)将得到的混合料芯砂放入制芯模具内压实,然后将其与模具一 同放入微波环境中执行加热,取出
华中科技大学 2021-04-14
一种内置PVC-FRP管高强混凝土芯柱的钢管混凝土异形柱的制作方法
(专利号:ZL 201310543020.9) 简介:本发明公开了一种内置PVC-FRP管高强混凝土芯柱的钢管混凝土异形柱的制作方法,属于土木工程技术领域。该组合柱的制作方法为:(1)制作PVC-FRP管;(2)在PVC-FRP管内绑扎钢筋,浇筑混凝土,制成PVC-FRP管高强混凝土芯柱;(3)在PVC-FRP管高强混凝土芯柱外绑扎钢筋,制作带加劲肋的异形钢管;(4)在PVC-FRP管高强混凝土芯柱和异形钢管内浇筑混凝土,制成内置PVC-
安徽工业大学 2021-01-12
一种泡沫轻质混凝土铁路路基结构
成果描述:本发明涉及一种新型泡沫轻质混凝土铁路路基结构。本发明公开了一种泡沫轻质混凝土铁路路基结构,本发明的路基结构中,上层路基和底层路基均由泡沫轻质混凝土浇筑而成。上层路基采用湿密度为550-600kg/m3的泡沫轻质混凝土浇筑而成,所述底层路基采用湿密度为500-550kg/m3的泡沫轻质混凝土浇筑而成。本发明的路基结构,采用泡沫轻质混凝土整体浇筑施工而成,比常规路基填料施工周期更短。本发明的路基在列车荷载作用下能够充分发挥材料自身的性能、保持良好的使用性能,可保证列车运行的平稳与舒适性,减少路基病害,节约运营期间的维护成本,非常适合用于高速铁路路基。市场前景分析:轨道交通基础设施建设领域。与同类成果相比的优势分析:技术先进,性价比较高。
西南交通大学 2021-04-10
柔模混凝土沿空掘巷成套技术
由西安科技大学煤矿支护研发中心王晓利教授创新团队开发的柔模混凝土沿空掘巷成套技术的核心技术是采用柔模混凝土锚碹联合支护,支护的具体工艺过程是预先制作柔性模板,通过锚杆和钢筋网将柔性模板固定在巷道周边,采用混凝土泵将自密实混凝土拌和物灌入柔模中,利用柔模透水不透浆的特性,将混凝土中多余的水分滤出,降低水灰比,提高混凝土早期和后期强度。这样就在巷道周边就形成一个锚碹联合支护结构。由于沿空留巷比沿空掘巷具有优越性,多数矿井采用无煤柱开采时基本上采用沿空留巷的方式,但对于个别动压大、三软煤层难以沿空留巷时,可进行沿空掘巷。
西安科技大学 2021-04-11
首页 上一页 1 2
  • ...
  • 22 23 24
  • ...
  • 73 74 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1