高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
“微界面技术”助力“双碳”战略
国际领先的系列化微界面强化反应技术平台 一、项目分类 重大科学前沿创新、关键核心技术突破、显著效益成果转化 二、成果简介 南京大学化学化工学院张志炳教授团队历时20年以大型反应器中微纳尺度界面上的分子传递为研究对象,创造性地研发出国际领先的系列化微界面强化反应技术平台,解决了炼油、石化、新材料、精细化工、生化制药和环境治理等化学制造领域普遍存在的“四高一低”(高压高危、高能耗物耗、高排放高污染、高投资、低效益)问题,不仅可使现有存量的化学制造装置大幅节能降耗、提高安全环保性能,同时可重塑传统的化学工艺流程和关键装备结构,突破国际跨国公司的知识产权围堵。对于助力我国化学制造业转型升级和绿色低碳发展,具有革命性重塑意义。 已申请700余项知识产权,其中国际PCT 120项。该成果已荣获省部级技术发明一等奖和基础研究成果一等奖,被两院院士评价为“具有原创性、重大突破、处于国际领先水平”。已在石化、新材料等多领域应用,产生经济效益20多亿元。
南京大学 2022-08-12
异构界面爆炸复合板的制备技术
成果创新点 主要技术创新路径:首先在金属板上精确车铣出所需 异构界面,然后根据爆炸焊接相关理论计算出制备过程所 需的全部参数,最后在指定的环境下进行爆炸复合操作。 关键技术指标:异构界面形状尺寸确定、焊接参数的合 理选择、精确定位及对复板飞行姿态的控制。 核心解决问题、核心优势:解决了物理化学性质相差 很大的金属板材之间的复合,同时异构界面增加了金属板 材间的结合面积,提升了结合强度。
中国科学技术大学 2021-04-14
异构界面爆炸复合板的制备技术
主要技术创新路径:首先在金属板上精确车铣出所需异构界面,然后根据爆炸焊接相关理论计算出制备过程所需的全部参数,最后在指定的环境下进行爆炸复合操作。 关键技术指标:异构界面形状尺寸确定、焊接参数的合理选择、精确定位及对复板飞行姿态的控制。 核心解决问题、核心优势:解决了物理化学性质相差很大的金属板材之间的复合,同时异构界面增加了金属板材间的结合面积,提升了结合强度。
中国科学技术大学 2023-05-16
替代电镀的机械表面涂层技术及自动化装备的产业化
本项目旨在替代具有污染的电镀技术,开发了新型纳米环保型涂层及涂覆工艺,实现废水、废气零排放,并研发了五轴联动自动喷涂设备。 一、项目分类 关键核心技术突破 二、成果简介 本项目旨在替代具有污染的电镀技术,开发了新型纳米环保型涂层及涂覆工艺,实现废水、废气零排放,并研发了五轴联动自动喷涂设备。目前本项目开发的轴瓦涂料已在汽车行业得到认可,性能超过国外产品,取得较好效益,而针对高盐高湿蚀环境开发的船舶涂层材料也已经通过全套测试,项目已具备量产能力。 产品目前已得到安徽美达机电实业实业有限公司、中国万宏集团、宁波连通设备制造有限公司、上海祥生贝克轴瓦有限公司推广使用。其中安徽美达机电已实现销售利润600万,上海祥生贝克轴瓦有限公司采用新技术产品实现利润1000万,中国万宏集团采用本机本项目技术实现销售利润400万。
宁波大学 2022-08-16
自动界面张力仪
产品详细介绍 Zl-3型全自动界面张力仪采用圆环法(GB6541)在非平衡条件下,测量各种液体表面张力(液-气相界面)及矿物油与水的界面张力(液-液相面)。该仪器采用了先进的微处理器技术,大屏幕彩色液晶显示,大容量FLASH存储技术,可随意存储200条实验结果。该仪器具有完善的人性化操作提示以及美观大方的操作界面。该仪器是石油,化工,电力,高校,科研等行业进行表面张力测量的新一代得力产品 
山东博山同业分析仪器厂 2021-08-23
微界面传质强化反应-精细分离成套技术
长期以来,石油炼制、石化和煤化工产品加工、制药、新材料等生产过程中的副产物多、能耗高、污染大等技术问题一直困扰国际学术界与工程界。团队另辟蹊径,采用完全不同于国际上的方法,解决了大规模制造微气泡(微米级尺度)的理论问题与相关技术原理,并研发了核心装备,发明了数以十亿计的微气泡系统的测试与表征方法,建立并开发了制造和调控微气泡与气液微界面的数学模型与计算机软件,同时在实验室研究和工业应用中,突破了国内外微气泡系统的气/液比不能超过0.05/1的上限,把
南京大学 2021-04-14
技术需求:机械加工
引进机械加工专家需要解决的问题:1、人工成本高2、刀具寿命不长3、设备不能自动停机4、自动化程度低。引进机械加工专家预期目标:1、所有车床改完自动化后,车床人员由原来的54人下降至6人,人员降比达到88%。2、设备上可以设置参数,刀具加工寿命到了后可自动停机,避免造成人为的失误。3、车床更改自动化后,人员成本支出大约可减少316万元。引进冶炼专家需要解决的问题:1、需要专家,结合现有产品结构形式和冶炼工艺标准,给予解决如何控制并减小合金材料的添加量或不加(如:增碳剂、硅、锰等),解决结合产品统一规格牌号的增碳剂,降低生产成本。2、如何提高熔化率,提高生产效率,落实节电降耗措施。                                         3、如何解决铁液中的渣物而且做到少用或不要集渣剂等物料。4、解决中频熔炼过程中产所产生的谐波降低动能损耗,降低生产成本。5、解决在中频熔炼过程中如何实现高效、节能快速应对实施操作机制。6、解决实现现场作业的自动化管理(指:从冶炼-取样-化验-结果等全面自动化传输)7、给予如何优化工艺配方结构,提高员工工艺作业操作技能
山东格新精工有限公司 2021-08-24
基于视觉的机械零件表面纹理特征分析
南京工程学院 2021-04-13
直接界面法制备三维多级表面形貌多孔磷酸钙纳米陶瓷的方法
本发明涉及一种直接界面法制备三维多级表面形貌多孔磷酸钙纳米陶瓷的方法,使用甲醇、水溶性钙盐、挥发性碳铵盐、表面活性剂PVP和明胶等、磷酸氢二铵和磷酸氢二钾等为原料采用界面法在聚氨酯泡沫支架上形成碳酸钙多孔坯体,然后通过130℃或以上水热处理及600-1000℃下高温处理,即可得到具有三维多级表面形貌的多孔纳米磷酸钙陶瓷。所得到的最终制品平均孔径可控制在50μm到1000μm之间,平均晶粒尺寸在200nm到1μm之间。孔呈三维贯通的海棉形态,孔壁的横截面呈三角形。
西南交通大学 2016-10-20
氮化镓界面态起源
已有样品/n基于超低温的恒定电容深能级瞬态傅里叶谱表征了LPCVD-SiNx/GaN界面态,在70K低温下探测到近导带能级ELP (EC - ET = 60 meV)具有1.5 × 10-20 cm-2的极小捕获界面。在国际上第一次通过高分辨透射电镜在LPCVD-SiNx/GaN界面发现晶化的Si2N2O分量,并基于Si2N2O/GaN界面模型的第一性原理分析,证明了近导带界面态主要来源于镓悬挂键与其临近原子的强相互作用。由于晶化的Si2N2O
中国科学院大学 2021-01-12
1 2 3 4 5 6
  • ...
  • 737 738 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1