高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
冬小麦智能化滴管水肥一体化栽培技术
水肥一体化滴灌技术是基于作物生长特性和环境状况等条件,借助新型滴灌系统, 在灌溉的同时将肥料配兑成肥液一起输送到作物根部土壤,确保水分养分均匀、准确、 定时定量地供应,达到节水节肥、提高水肥利用效率、增产增收等效果。在山东省首次 提出了完整配套的冬小麦智能滴灌水肥一体化栽培技术体系,实现了冬小麦的节水、节 肥、高效、环保的可持续生产,整体达到国内先进水平,经济、生态和社会效益显着。 目前,冬小麦智能化滴灌水肥一体化栽培技术体系在青岛、烟台、潍坊等推广应用每年 超过了5万亩,实现节水40%-60%,提高劳动效率80%以上,增加产量产量10%-20%。
青岛农业大学 2021-04-11
大豆生物加工与高值化利用关键技术与产业化
我国是世界上最大的植物油料加工和消费国,总量近 1.5 亿吨,在国家食品安全体系中举足轻重。植物油料加工长期以来以压榨法和浸出法制油、碱溶酸沉制蛋白、化学精炼油脂为技术主线,普遍存在:1)加工条件剧烈、能耗高、溶剂残留、环境污染;2)蛋白功能性差、组分高值化利用率低;3)生物精炼连续性差、附加值低等共性关键问题。本项目在国家自然科学基金重点项目、国家“863 计划”、国家科技支撑计划等重大项目支持下,历经 13 年持续攻关,以现代生物技术为手段,突破植物油料生物解离关键技术为核心、组合发明生物解离产物及油脂的高值化利用成套技术,形成了植物油料全产业链新一代加工技术体系。 项目已获授权发明专利 45 件,申请国际专利(PCT)3 件,出版著作 10 部,发表相关论文 205 篇(SCI/EI106 篇),主持制定或参与国家、行业标准 10 项。项目已获中国轻工业联合会技术发明一等奖、中国发明协会发明创业成果一等奖、黑龙江省技术发明一等奖、中国食品科学技术学会技术发明一等奖等省部级以上科技奖励 14 项。 项目技术主要用于生产有机大豆油脂、大豆蛋白肽以及大豆膳食纤维等产品,项目目前已通过中试实验。项目计划投资预计 2 亿元,建设规模为加工原料豆 20000 吨/年,项目达产后预计年销售额为 3.6 亿元人民币。通过该项目的实施,将打破了国外在高端油脂和蛋白产品生产上的技术垄断,增强了企业的核心竞争力。
东北农业大学 2021-05-10
节能型智能化半导体照明产品开发及产业化
该项目隶属于“天津市科技支撑计划重点项目”,项目将LED照明与光通信技术等结合起来,形成新的技术模式,开发了集照明与光通信为一体的LED系统,设计实现了基于照明LED的高速短距离光通信收发单元,LED室内调光调色照明控制器,基于LED照明的光学无线智能家居控制系统等,实现了通信质量和照明效果的协同优化。 本项目中的产品均属于典型的节能产品,具有很高的技术含量和高附加值,具有节能环保、电磁免疫、经济集约等优点,在上海世博会“沪上.生态家”、“航空馆”以及第七届中国国际半导体照明展览会等展出,获得显著的社会效益,对推动相关产业的发展起到很好的作用。科研团队近年来深入的研究半导体照明和通信技术,在半导体照明技术成果应用与产业化、光电信号转换、光通讯设备、高速光发射接收模块开发等相关领域开展研究工作,并取得突出的成绩,申请了相关的国家级自然科学基金项目,并已获批。
天津职业技术师范大学 2021-04-10
机械装备自动化与智能焊接制造技术及产业化
本项目通过完善结构化焊接技术,研发视觉伺服机器人,研究焊缝图像处理算法和炉筒与大小炉盖的结构以及密封槽的设计,实现非结构化焊接制造蓝宝石炉,使其炉体性能可靠、制造工艺稳定、生产高度自动化。本项目的实施实现了如下的技术突破和创新:(1) 研发成功视觉伺服方法进行焊接机器人的焊缝跟踪控制,首次实现焊接环境的监控。(2) 研究晶体生长炉加热后对炉筒、大小炉盖等部件密封性能的影响;合理布置了电极与抽气管道装置;获得能在生产过程中安排合理的制作工艺和技术,保证晶体生长炉的密封性、粗糙度、同心度、平行度、垂直度达标及产品量产的稳定性。(3) 研发智能制造操作平台,可对蓝宝石炉进行结构化智能焊接。(4) 研发新型宝石炉,使蓝宝石炉的智能焊接制造技术获得突破性进展。●应用前景: 我国焊接自动化的市场容量在不断扩大,作为需求导向型行业,焊接自动化在工程机械和石油化工等行业中得到广泛应用。此外,在提高劳动生产率、提升产品质量和增强竞争力等方面,焊接自动化装备作为重要的基础装备之一,对我国未来先进制造技术的核心竞争力具有重要意义。而且对中国企业现有产能的焊接设备进行技术改造升级,也将产生巨大的焊接自动化装备需求,中国焊接自动化装备市场已进入高速发展阶段。 
南京工业大学 2021-04-13
虚拟化--中标麒麟服务器虚拟化系统软件V7.0
中标麒麟服务器虚拟化系统是基于中标麒麟虚拟化平台软件V7,面向高安全服务器虚拟化领域应用研制的安全保密虚拟化平台;产品通过国家保密科技测评中心基于《涉密信息系统服务器虚拟化和桌面虚拟化产品安全保密技术要求》(BMB30-2017)的安全性检测。支持海光、ARM64及 X86平台。 中标麒麟服务器虚拟化系统支持管理大规模服务器资源、网络资源、存储资源,实现资源池化并统一管理调度;为关键业务提供灵活的基础资源调度,高安全性、优越的性能和稳定性;提供三员管理、国密算法支持、完整性度量及保护、恶意行为防护等系列安全保密措施,保证高安全领域虚拟化平台的高效、安全稳定运行。 产品特点 中标麒麟服务器虚拟化系统能够在提高数据中心空间利用率、服务器利用率,减少硬件成本投入,降低能耗,减少服务中断时间的同时,提高资源使用的灵活性;提高业务系统的响应速度,提高基础架构管理效率,同时为客户构建的服务器虚拟化系统符合国家安全相关标准要求,是构建合规、安全、保密、敏捷、易用、可靠的服务器虚拟化平台系统的可靠选择。 项目 内容 安装部署及升级维护 支持自动化大规模部署 支持不停机升级维护 系统管理功能 对计算、存储、网络资源虚拟化成资源池并统一调度管理 提供集群级别的资源负载均衡调度及高可用保护 提供集群、主机、虚拟机级别的资源使用情况及运行状态实时监控,支持自定义监控项及监控项告警阈值,支持监控性能图及报表 支持虚拟机在线迁移及迁移压缩、迁移加密 支持虚拟机、主机网络QoS管理 支持虚拟网络管理,支持VLAN 支持平台级手动/自动虚拟机备份恢复 安全保密功能 管理员登录限制、多因子身份鉴别、登录失败处理 管理员权限分离和职责划分(三员管理) 访问控制(限制管理员对资源的访问权限) 启动过程完整性校验(保证虚拟机组件的完整性) 安全审计(对所有管理员的操作生成审计日志) 虚拟机密级标识全生命周期与虚拟机绑定 数据保护(机密性、完整性、密码要求等) 虚拟网络安全(VLAN、虚拟交换机隔离、网络带宽管理等) 支持恶意代码防护功能 安全管理(虚拟化服务保护、虚拟机监视器安全、监控管理、外联监控、外接存储设备管控) 虚拟机隔离(物理资源与虚拟资源、虚拟CPU、虚拟机内存、存储) 残留信息保护(磁盘空间、内存)
麒麟软件有限公司 2022-09-14
透明防伪材料—光变色薄膜
根据多层膜光学干涉的原理,当光线照射到薄膜,在进入各膜层时由于各膜层的光 学性质不一样使得有些光相干相长,有些光相干相消,随着观察者视角的变化薄膜呈现 不同的颜色。早在 1973 年加拿大国家研究院的 J.A.Dob-railski 等人就预见了变色薄 膜在防伪领域中的应用前景,并于 1987 年首次应用于 50 圆的货币上。稍后美国人也研 制出有金色变到绿色的全介质变色薄膜。再以后又有人与瑞士 SICPA 公司合作将变色薄 膜作为颜料掺入到油墨中,研制成光变色油墨。现在许多国家的护照、签证和货币上都 用上了光变色油墨。 光变色薄膜的光变色功能来自于多层膜的复合特性,光变色效果与组成该薄膜的各 膜层的材料性质、厚度以及膜层之间的组合有关。薄膜多采用金属膜与金属氧化物介质 组合,用物理方法(如热蒸发、电子束或离子镀、磁控溅射等)镀制薄膜。金属氧化物 介质膜用物理方法镀制质量控制比较困难,效率低,成本也比较高。同济大学课题组用 气凝胶或有机材料替代金属氧化物,材料性能稳定,可进行大面积快速涂膜,效率大大 提高,成本也很低。
同济大学 2021-04-11
变储能建筑材料
相变储能建筑材料是一种新型建筑节能功能材料,利用相变储能材料可以使传统能 源和可再生能源在时间和地点上进行流转,自动优化能源供应和需求之间的匹配,属于 智能能源概念,在建筑中应用这种材料可以显著提高建筑物的能源利用效率。其应用方 式主要有两种。 一为通过相变储能建筑材料提高建筑物对太阳能等可再生能源的利用率,降低建筑 物对传统能源的消耗。冬季,太阳能热丰富的时间为晴天和白天,而我们对太阳能热需 求的时间是晚上和阴天,二者之间存在明显的时间不匹配性。利用相变储能建筑材料蓄 存白天和晴好天气时的太阳能,在夜间或阴天将蓄存的太阳热释放出来,使得建筑物利 用太阳能的时间从白天和晴天延长到夜间和阴天,提高建筑物利用太阳能的量。 第二种方式为利用相变储能建筑材料开发电力峰谷差“绿色能源”。在盛夏或严寒时 节,空调或其它取暖设备往往集中使用,造成电力紧张,供不应求,而在其它时段又出 现电力过剩的现象,出现所谓的电力峰谷现象。为消除峰谷现象,电力公司将峰时电价 定为谷时电价的数倍,以鼓励电力用户多使用谷时电。在电力需求的波谷时段,可采用 相变储能复合材料蓄存由空调或制热设备产生的冷量和热量,用于电力波峰时段,降低 空调等设备在波峰时段的用电强度,可从用户侧的角度减小电力峰谷差,实现节电、节 能和节约资源的效果。 此外,相变储能建筑材料还可提高建筑物的热稳定性和热惰性,减缓建筑物室内的 温度波动,在提高室内热舒适度的同时,降低空调制冷或加热设施的启、停频率和运行 时间,并达到降低建筑能耗的目的。
同济大学 2021-04-11
锂离子电池电极材料
锂离子电池负极材料主要包括天然石墨、人造石墨、焦碳和碳纤维等。作为电极材 料的活性物质,对碳材料的要求有许多方面:如放电比容量、颗粒大小和比表面积、电 极极化性能、充放电稳定性等。目前国内外有许多研究单位在探索新的制备工艺来改善 电极性能。 采用常压干燥技术,成功地制备了碳气凝胶材料,通过控制制备条件,实现了碳气 凝胶材料微结构人为裁剪与控制。这些新型储能器件具有重量轻、体能密度高、无污染 等优点,是新一代绿色能源材料。多孔碳电极用于锂电池将优于枝晶锂电池,传统的电 极充电时枝晶会在阴极上成核,当枝晶越过电极跨度时将造成短路,从而限制了充电次 数。用多孔碳做电极时,锂离子嵌在石墨结构中,防止了锂金属的沉积和枝晶的形成, 而丰富的孔洞可提高电极与电池溶液的接触面积。碳气凝胶是由间苯二酚和甲醛在碱性 催化剂作用下,通过溶胶-凝胶和炭化工艺制备而成的。通过控制水和催化剂的用量, 可以控制其孔洞结构和密度,它的干燥过程也正由管来的超临界干燥向常压干燥发展, 以便降低气制备成本,改善其性能,使其得到更广泛的应用。碳气凝胶也可能成为电池 材料的理想选择。 
同济大学 2021-04-11
新型稀土磁性蓄冷材料
磁性蓄冷材料是在90年代初被发现的。这些材料用于制冷机中后,使得商用制冷机的温度可达2K,效率有了突破性提高(以往这种制冷机中使用的蓄冷材料只有铅,但是因为铅的比热容在15K以下急剧下降,使得小型制冷机在10K温度以下制冷效率几乎为零,商用制冷机的最低制冷温度在8K左右)。使用磁性蓄冷材料的最大特点在于不需要重新建立一个制冷体系,只要将商品化的气体制冷机中的蓄冷材料换成磁性蓄冷材料。 Er-Ni系列磁性蓄冷材料的指标: 比热容峰值:5K~20K; 在10K以下的比热容峰值为0.35~0.81J/cm3.K; 4K到20K的比热容积分∫CdT是5.5J/cm3 新型稀土磁性蓄冷材料已经用于小型回热式低温气体制冷机产品中。这种制冷机的制冷温度在4.2K~20K,一般用于医用核磁共振成象仪、磁悬浮列车和超导发电机中冷却其大型超导磁铁、用于量子干涉仪(SQUID)、射频天文望远镜的传感器探头和军用红外探测器中以提高其灵敏度,并用于低温冷疑高真空泵中等等。使用了这种新型稀土磁性蓄冷材料替代传统蓄冷材料以后,可以使医用核磁共振成象仪等不用灌注液氦,每年仅每台医用核磁共振成象仪就可以节约16万人民币。
北京科技大学 2021-04-11
新型稀土磁性蓄冷材料
新型稀土磁性蓄冷材料是一种高熵密度磁性材料(high entropy magnetic materials),高熵密度磁性材料这一概念是磁性材料用于制冷工程时提出的。它的特点是材料的磁熵发生变化时会出现大的吸热与放热效应,可以应用于制冷技术中。利用磁性材料在经历磁相变时发生的磁熵变化,可以将高熵密度磁性材料作为磁蓄冷材料(magnetic regenerator material),用于小型回热式低温气体制冷机中。 这种制冷机的制冷温度在4.2K~20K,一般用在高技术领域,例如可用于医用核磁共振成象仪、磁悬浮列车和超导发电机中冷却其大型超导磁铁、用于量子干涉仪(SQUID)、射频天文望远镜的传感器探头和军用红外探测器中以提高其灵敏度,也可以用于低温冷疑高真空泵中等等。以往这种制冷机中使用的蓄冷材料只有铅。由于铅的比热容在15K以下急剧下降,使得小型制冷机在10K温度以下制冷效率几乎为零,制冷温度难以低于8K。要得到低于8K的制冷温度,只得附加效率极低的J-T回路。为了提高低温制冷机的制冷效率,在过去的几十年中,人们都在努力寻找在20K以下具有高比热容的材料。具有实用价值的Er—Ni系列磁性蓄冷材料是在90年代初被发现的。这些材料用于制冷机中后,使制冷机的效率有了突破性提高。 磁性蓄冷材料的最大特点是不需要重新建立一个制冷体系,只要将商品化的气体制冷机中的蓄冷材料换成磁性蓄冷材料,就可大大提高制冷机效果。因此磁蓄冷材料正在取代原来的蓄冷材料金属铅。而且由于磁性蓄冷材料的出现,推动了低温制冷机的发展。现在,不用灌液氦,用制冷机带动的医用核磁共振成象仪和超导磁体已经商品化。在这些新设备中,都必须使用磁蓄冷材料。
北京科技大学 2021-04-11
首页 上一页 1 2
  • ...
  • 37 38 39
  • ...
  • 372 373 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1