高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
语义Web和大数据分析
与华为技术有限公司开展互联网语义分析合作研究,双方共同研发了“电商知识图谱自动化构建和电商评论分析系统”,该系统可以自动化将不同电商网站的数据抽取和集成,形成一个庞大的电商知识图谱,并且利用这个知识图谱来对电商评论做语义分析。该项目中的技术已经被华为公司用于大数据中的视频分析,并且产生了良好的经济效益。另外,与百度签订了“本体及知件技术构建医疗领域知识库和应用研究”项目,提交并审核通过一项专利“一种医疗知识库中保健品与疾病的关联构建方法”,并且提出一种word embedding的方式挖掘非结构化数据中实体关系的方法,项目成果被百度用于医疗保健品的搜索中,取得了很好的社会效应。
东南大学 2021-04-11
基于DSP的高速数据采集平台
开放化、高速化和高精度化都是现代信息技术的发展趋势和研究热点。数据采集系统是通信技术和数控技术领域的重要功能模块,应用领域十分广泛。 本数据采集平台的中央控制芯片选用美国TI公司的DSP (Digital Signal Processor,数字信号处理芯片)TMS320C5402。DSP具有高速、高精度的运算能力,强大、方便的数据通信能力,灵活、可靠的编程与信号处理能力。设计选用昀A/D转换芯片是AD公司推出AD976A,其转换精度是16位,转换速率最高可达200k/s。系统的核心采用DSP控制AD976A实现高速数据采集的功能。
南京工程学院 2021-04-11
大数据预测疫情传播研究
该项目利用国家卫健委公布的确诊病例总数数据链,以应用传播动力学为方法,以黄森忠教授建构的普适SEIR模型作为模型理论,通过“南开大学智英健康数据研究中心”开发的程序EpiSIX,分析新冠病毒肺炎疫情有关数据,并将分析结果生成可视化网页,开展疫情发展回顾、确诊病例数时序区间预测等相关工作,对疫情发展情况及疫情防控效率作出研判。 研究团队由黄森忠教授和山西大学复杂系统研究所所长靳祯教授、南京医科大学公共卫生学院彭志行副教授共同领衔,南开大学统计与数据科学学院多名年轻教师与研究生加入。研究团队从1月30日至2月14日,每3日发布一次预测,已连续发布疫情传播预测6期,并根据疫情变化,及时调整预测评价指标,其预测区域也进一步细化,由原来的对全国、湖北省、武汉市的疫情预测,拓展为对全国各省市的预测。
南开大学 2021-04-10
时空面板数据模型的研究
近日,中国科学技术大学管理学院在时空面板数据模型的研究中取得重要进展,突破经典的广义极大似然估计和广义矩估计理论框架,提出了基于空间权重矩阵特征分解的估计和模型选择方法。相关论文在学术期刊《美国科学院院报》上发表。现在很多大数据(环境,疫情,犯罪,物流,区域经济等)呈现出时间和空间的复杂相依关系,由于时空的交互影响提高了对应的时空模型的估计难度。有别于已有的复杂估计方法,文章改变传统的估计思路,充分利用时空数据的空间结构特征,采用空间权重矩阵的特征分解,极大的简化了估计方法,提高了估计精度和运算速度,并提出了相应的模型选择方法。理论部分模型的示意图如下图所示:文章以 2008 年 1 月到 2013 年 12 月(72 个月) 138 个美国匹兹堡行政地区的犯罪数据为例做了示范。在这个例子中,犯罪数据重罪(Part I)和轻罪(Par II)在138个行政区的平均犯罪个数分布如下图:文章还选取了 15 个区域社会经济变量作为解释变量,包括区域总人口、收入、失业率、贫苦率、非裔比例、教育水平等。模型的拟合程度指标R平方(接近1时,拟合程度高)达到 0.98,表明选择的模型非常好的拟合了数据。数据分析结果可以用于以轻罪发生率预测重罪发生率,解释犯罪学的“破窗理论”,分析重罪发生率和总人口、收入和贫困等的量化关系。论文链接:https://doi.org/10.1073/pnas.1917411117详细阅读:http://news.ustc.edu.cn/2020/0318/c15884a414854/page.htm
中国科学技术大学 2021-04-10
基于 DSP 的高速数据采集平台
南京工程学院 2021-04-13
高性能大数据处理平台
项目简介 本成果基于高性能计算技术和大数据存储与处理技术,避开传统依赖单个计算机或 集群计算的缺点,应用先进的分布式文件系统和并行计算架构,使用普通的 PC 级机器构 建高性能的大数据处理平台。属国内领先项目。该成果处于中试研究阶段,并申请了专 利,专利号:ZL201010510071.8。 性能指标 (1)能利用 PC 级机器实现高速的大数据处理。 (2)能高效存储和管理海量的数据。 (
江苏大学 2021-04-14
数据传输存储单元
成果简介:数据传输存储单元是一款基于GPRS/TD-LTE网络的无线数据通信产品。该产品利用运营商的无线网络,为终端设备和数据服务中心(平台)搭建起一条无线通信链路,客户可基于该无线通信链路传输其用户数据。数据传输存储单元配有128MBFLASH空间用于数据存储功能。并具备数据补传、数据定时主动上传功能,支持数据加密压缩算法,并能够根据物联网要求添加加密算法。数据传输存储单元具有远程、本地控制输出功能,可支持本地远程升级维护,具备设备自检功能和终端设备异常事件记录功能。数据传输存储单元具有极高的性
北京理工大学 2021-04-14
多维有序数据管理技术
01. 成果简介 非结构化数据是没有显式数据结构约束的非关系型数据,包括时间序列、图像、音视频等,其管理与分析技术成为国际信息领域战略竞争焦点。许多实际应用中,非结构化数据不仅总的体量大,而且数量也极为巨大。例如,我国气象预报业务每天接收到的气象数据文件达数亿非结构化气象小文件。此外,这些文件存在大量业务语义属性,这些属性形成了描述一个数据的多种维度。 针对海量非结构化数据的管理需求,清华大学软件学院提出了多维文件空间模型,并基于此模型突破了一系列非结构化数据核心技术,包括:l  非结构化数据到多维空间模型的映射方法;l  多维文件空间模型的分布式物理实现方法;l  分布式存储的副本控制方法。 该技术通过对非结构化数据的属性维度进行分类,将非结构化数据建模成多维文件空间模型,并对文件集合上的各种操作进行定义。此外,通过细粒度计算磁盘IO代价、网络代价、副本代价、CPU代价、数据分区代价,得到指定工作负载下的最优物理存储实现,进而通过排队论等方法对副本的一致性进行控制,实现满足用户SLA(服务等级保证)的柔性事务。  图1. 基于多维文件空间的最优非结构化数据存储方法示意图  相比现有对象存储等技术,该项技术可以实现更加灵活的数据访问。同时,该项技术能够建立多维文件空间到分布式物理存储的最优映射机制,保证非结构化数据总访问代价最小。相比于现有的分布式文件系统,该项技术可以确保使用少量内存管理数以亿计的海量非结构化小文件,而现有多数分布式文件系统在遇到海量文件管理时往往会出现内存爆炸问题。02. 应用前景 本成果技术可广泛用于各种类型尤其是多维度属性的非结构化数据管理。目前已经被成功应用于中国气象局和全国31个省或直辖市气象局,以及石油、风电等多家工业企业。该项成果还入选了2016国家十二五科技创新成就展和2018首届数字中国建设峰会,并作为贡献之一获得2018年教育部技术发明一等奖和中国气象学会科技进步奖一等奖。03. 知识产权 本项成果已获得发明专利授权13项。04. 团队介绍 本成果团队长期研究大数据管理与分析技术,包括分布式数据存储与查询、数据质量、深度学习与迁移学习、业务过程挖掘等方向。团队课题负责人为王建民教授、博士生导师。团队在本领域发表国际学术论文100余篇,申请专利100余项,授权专利60余项。相关成果获2018年教育部技术发明一等奖、2018年气象学会科技进步一等奖、2014年国家科技进步二等奖、2013年中国电子学会科技进步一等奖。05. 合作方式 技术许可 / 软件服务。06. 联系方式 邮箱:liuyi2017@tsinghua.edu.cn 团队电话:010-62786972;13051000520 团队邮箱:huangxdong@tsinghua.edu.cn
清华大学 2021-04-13
高性能XMLXML数据处理技术
北京工业大学 2021-04-14
时序数据水印系列算法技术
1. 痛点问题 工业时序数据具有应用领域广、数据规模大、经济价值高的特点,蕴含的巨大商业价值,因而其安全性受到不法分子采用黑客攻击等技术手段以及雇佣商业间谍等非技术手段的威胁。数据所有者通常会采用前效方法对数据库中的数据加以保护,但是这些方法只能有效防止外部人员进行非法盗窃,对于内部人员盗窃等途径并不能有效遏制。数字水印是解决数据在传播过程中安全问题的一个主流分支,通常的数字水印采用分组多数投票方法来提升算法的鲁棒性,但时序数据通常有较多的噪声,高价值数据点相对集中,因而一个未经加权的投票算法可能会因为大范围的噪声干扰而导致水印判定失效。此外,常见时序数字水印算法基于时间戳进行水印嵌入计算,容易受到更改时间戳或频率变换的攻击,一旦时间戳序列大幅度改变,水印提取算法将受到很大影响,很可能导致水印提取完全失效。 2. 解决方案 工业物联网数据是工业大数据规模迅速扩张的主要来源。各类物联网传感器以极高的频率采集其所在设备的工作状态数据,通常为一系列包含数据产生时间戳(Timestamp)和采集数据(Data)形式为(Timestamp, Data) 的元组序列,称为时间序列。工业时序数据具有应用领域广、数据规模大、经济价值高的特点,蕴含的巨大商业价值,因而其安全性受到不法分子采用黑客攻击等技术手段以及雇佣商业间谍等非技术手段的威胁。 数据所有者通常会采用前效方法对数据库中的数据加以保护,包括但不限于:数据加密、用户权限划分等等。但是,这些方法只能有效防止外部人员进行非法盗窃,对于内部人员盗窃等途径并不能有效遏制。数字水印是解决数据在传播过程中安全问题的一个主流分支,常见时序数字水印算法基于时间戳进行水印嵌入计算,容易受到更改时间戳或频率变换的攻击,一旦时间戳序列大幅度改变,水印提取算法将受到很大影响,很可能导致水印提取完全失效。此外,数字水印通常采用分组多数投票方法来提升算法的鲁棒性,但时序数据通常有较多的噪声,高价值数据点相对集中,因而一个未经加权的投票算法可能会因为大范围的噪声干扰而导致水印判定失效。 本项目针对常见的水印失效场景进行了分析,提出了能够有效提示水印鲁棒性的技术,更好的确保数据安全的管理能力。 3.合作需求 在全国范围内工业互联网/工业大数据相关领域寻求应用场景,希望能与能源/装备制造行业的大中型企业开展这方面的合作研究和落地实施;并针对上述企业开展包括二次开发在内的各类实际应用,助力企业降本增效、转型升级。
清华大学 2023-02-14
首页 上一页 1 2
  • ...
  • 71 72 73
  • ...
  • 999 1000 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1