高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
聚烯烃人造草纤维材料制备关键技术
人造运动草坪应用在体育运动场地始于欧美发达国家,至今已有20多年的历史,其发展源于天然草对气候条件变化的局限性。随着人造运动草丝纤维的技术革新,人造运动草坪的运动力学性能、运动安全性能和运动舒适性能已经接近天然草。目前,国内对人造草丝纤维的研究处于起步阶段,尚未形成系统的学科领域,在使用性能和安全性能标准的制定方面,远远落后于国外。因此,为了真正实现草丝纤维材料的自主创新,必须形成人造草丝材料设计的基础理论和方法,即通过对天然草坪的仿生学、运动力学性能和运动安全性能的研究,形成人造草丝材料设计的基础理论和方法,以实现人造草丝材料的功能设计、材料安全性能设计、材料寿命设计以及材料的形态设计。 本项目通过对草坪的运动力学性能和运动安全性能的研究,形成人造草丝材料设计的方法,实现人造草丝材料的功能设计、材料安全性能设计、材料寿命设计以及材料的形态设计。系统研究和解决上述人造运动草丝纤维材料产业化过程的一些关键技术和一些基本科学问题。在此基础上,开发高耐久性、高耐候性功能型色母粒、纳米复合功能型母粒及关键制备技术,从而开发出具有自主知识产权的人造草丝产品,以填补国内空白,推动我国体育新材料的发展。同时将这些关键技术用于人造运动草丝纤维材料规模化生产过程中,建立高性能人造草丝纤维材料国产化的工程示范。
华东理工大学 2021-02-01
高性能W-Cu复合材料制备新技术
由于W和Cu两种材料的熔点相差较大,采用熔铸方法很难使两组元之间均匀熔化和熔合,传统的W-Cu复合材料制备方法主要采用粉末冶金制备技术:包括熔渗法、活化烧结法等。熔渗烧结时,液相Cu仅靠W骨架孔隙的毛细管作用渗入,铜凝固相不容易细小均匀;而高温烧结又会使W颗粒聚集长大,最终形成粗大不均匀的组织。活化烧结法通常是在W粉中加入少量Fe、Ni、Co等活化剂,但活化剂的加入会显著的降低W-Cu材料的电导率,同时活化烧结后钨坯的收缩变形较大,并且其烧结率随烧结温度的不同而变化,钨坯的密度不好控制,最终导致渗铜后W-Cu材料的化学成分偏差较大。这些组织的不致密与不均匀最终影响材料的关键性能如硬度、断裂强度、电导率、热导率等。 随着科学技术的发展,对高比重W-Cu合金的成分、结构形态,强度、致密性以及尺寸稳定性及变形能力等性能要求越来越高,急需制备技术的创新和发展。冷喷涂是近年发展起来的一种新型喷涂技术,由于喷涂温度较低,喷涂材料不易氧化,涂层能够保持原始设计成分;另外热影响小、热残余应力低,能够制备厚涂层及块体材料。 然而研究发现,采用两组元或多组元机械混合粉体喂料制备冷喷涂复合涂层时,如果不同组元之间颗粒材料的特性相差较大,则它们的沉积行为及沉积难易程度就会各不相同,最终导致涂层中软质相含量较高、硬质相含量偏低,使涂层偏离设计成分;即使通过提高混合粉体中硬质相的相对含量也很难从根本上解决上述问题。本发明提供了一种以铜包钨粉末为原料用冷喷涂技术制备钨、铜复合材料的新方法。制备的复合材料沉积体无氧化,保持了与粉体喂料相同的组织结构;W和Cu两相分布均匀,无偏聚,孔隙率低;硬质相钨含量比采用混合粉制备的涂层大幅度提高;而且还可以通过后续致密化处理使材料进一步致密化。 已申请专利:“一种制备高钨含量、均匀致密W-Cu复合材料的方法”,中国发明专利申请号:201110329570.1.,专利申请时间:2011.10.26,专利公开日:2012.02.29
北京科技大学 2021-04-11
植物油基多元醇及其PURF材料制备技术
用可再生植物油为主要原料,制备多元醇。用常规聚氨酯生产工艺和装置制备聚氨酯硬质泡沫材料。  以植物油为原料,采用一步法衍生得到多元醇,可再生生物基原料含量80%以上(重量),多元醇羟值400~450,酸值≤2.0。进一步与多聚异氰酸酯(PAPI)反应,制备聚氨酯硬质泡沫材料(PURF)。所得PURF材料性能达到或优于通用聚酯多元醇制备的相应材料(材料性能对比见下表)。工艺路线:1. 植物油    多元醇(催化剂,一步反应)2. 多元醇    聚氨酯硬泡材料(PAPI,催化剂、助剂、发泡剂,模具)应用范围:硬质聚氨酯泡沫材料所需生产条件:主要原材料(植物油,PAPI,聚氨酯助剂);       设备及投资(机械搅拌反应釜(200℃,真空10 mmHg)环保情况:零排放
南京工业大学 2021-04-13
非金属材料激光精细加工技术及设备
采用激光切割技术,完成厚度范围为百微米至十余毫米的多种高硬脆非金属材料(金属/ 非金属等硬脆性难加工材料)的直线、曲线、角型等自由路径的切割、打孔等。其技术创新点在于:(1)可实现   多种厚度、多种材料的切割,且材料规格不局限于板材,管材与弧面材料亦可进行加工。(2)可以直接   实现材料自由路径切割,而不局限于直线路经。(3)切割质量高,对于厚度较薄的材料可以保证较高的   切面粗糙度,对于较厚的材料可以保证切割后切割路径边缘无裂纹产生。(4)具有提供特殊硬脆性材料   精细加工研发工艺方案和设备系统开发的能力。
北京工业大学 2021-04-13
树脂基复合材料制造模拟与优化技术
北航针对复合材料结构制造低成本化和数字化的发展需求,在多项国家重大研究项目的支持下,对热压工艺和液体成型工艺的固化成型基础理论、制造缺陷形成机理与控制方法、工艺过程数值模拟与优化技术、材料工艺特性测试表征方法与工艺特性数据库等方面进行了系统深入的研究,在复合材料制造过程数字化技术上填补了多项国内外空白。 已建立先进树脂基复合材料制造模拟与优化技术及相应的软件,用于先进复合材料制造过程的分析、缺陷预测和工艺参数的优化,适用于各种结构形式和制造方法,可明显提高产品质量,降低制造成本,缩短研制周期,提高材料的利用率,对促进复合材料用量和应用水平的提高具有非常重要的意义,在航空航天、风电叶片、汽车等领域具有广泛的应用前景。 研究成果已在多家航空航天研究院所及主机厂的工程实际中得以应用,如雷达罩、防热套、波形梁、飞机鸭翼梁以及直升机起落架等,取得了良好的效果,显著缩短了制造周期、降低了制造成本、提高了产品合格率。 相关成果在2009年获得了国防科技进步一等奖和国家科技进步二等奖,并获批国家发明专利5项。
北京航空航天大学 2021-04-13
高性能二次电池及相关能源材料、技术
成果简介:项目获国家 973、863 计划支持,获得国家科技进步二等奖1 项、 省部级科技一等奖 3 项,发明专利 20 余项。 技术领域:新型材料 应用范围:能源环保,新材料 所在阶段:小规模生产,试生产阶段 成果转让方式:技术转让、技术入股与合作、技术服务 市场状况及效益分析:本项目研究开发的具有自主知识产权的高功率镍氢动力电池(>1250W/kg)和锂离子动力电池(>1800W/kg)已应用于东风、奇瑞、长安、
北京理工大学 2021-04-14
CdS/PAMAM纳米材料的制备及潜指纹显现技术
Ø 本项目以聚酰胺-胺型树形分子(PAMAM)为模板制备了粒径可控、颜色可调的CdS/PAMAM量子点溶液,该溶液具有较高的荧光强度;应用于潜指纹识别时选择性吸附能力优异,发光量子点沉积在纹线上,小犁沟没有吸附(图1);尤其对胶带粘面潜指纹具有非常理想的显现效果,可以通过室温反射和紫外可见荧光两种形式成像,具有较广的适应性;对陈旧指纹的显现效果良好,大大提高了使用范围。该显现液在公安部物证鉴定中心、北京市公安局等实战部门进行了实际应用,均取得很好的效果,一致认为其操作简便、显现潜指纹效果好
北京理工大学 2021-01-12
含锂高强铝合金材料及其制备技术
锂元素作为最轻的金属元素加入铝合金中可以降低合金的密度,提高合金的比强度和弹性模量。本发明公开了一种含锂高强铝合金材料及其制备方法,它由锌(Zn) 5.0%~12.0%、镁(Mg) 1.0%~5.0%、铜(Cu) 1.0%~5.0%、锂(Li) 0.8%~1.7%、锰(Mn) 0.1%~0.3%、锆(Zr) 0.1%~0.5%、铬(Cr) 0.05%~0.2%和余量为铝(Al)组成。本发明的材料与此合金成份相当的美国商用7075合金在T73状态下比强度提高了28%,较国产LC4提高了24%,材料的密度降低了3.7%。 主要性能指标:1. 抗拉强度:为650~850Mpa;2. 屈服强度:400~700Mpa;3. 延伸率:8~16%;4. 比强度:170×105mm~200×105mm。
北京航空航天大学 2021-04-13
大尺寸块体非晶及其复合材料制备技术
开发了一种制备大尺寸块体非晶合金的方法,利用该技术方法还可以制备非晶合金基复合材料。该项技术已经获得授权国家发明专利 2 项。产品性能、指标大尺寸块体非晶合金或非晶合金基复合材料产品非晶一致性好、尺寸大,理论上可以做到任意尺寸,目前可以做到 500mm×300mm×300mm。适用范围、市场前景块体非晶合金具有超强、超硬、耐腐蚀等优点,而且可用于制备块体纳米晶材料,但目前制备尺寸受到限制。本成果的目标产品适用于生产、应用超强、超硬金属材料的企业
江苏大学 2021-04-14
沥青路面功能材料开发及应用技术
提出采用微波辐射的方法对废胶粉进行表面活化处理来改善废胶粉改性沥青路用性能,研究确定了微波辐射废胶粉活化方法和最佳活化条件,提出了微波辐射废胶粉的最佳活化工艺,提高了废胶粉改性沥青的技术性能。该成果与 SBS 改性沥青性能相当,但可节约一半成本,既节约能源,又能保护环境。
扬州大学 2021-04-14
首页 上一页 1 2
  • ...
  • 29 30 31
  • ...
  • 855 856 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1