高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
柔性超疏水气凝胶材料
开发了一种柔性超疏水气凝胶材料。柔性超疏水气凝胶材料采用物理溶胶-凝胶工艺将有机纤维和有机气凝胶复合,由于不采用传统的水解/聚合溶胶-凝胶工艺,该方法操作更简捷、对设备和工艺要求更低。所得到的柔性超疏水气凝胶材料具有良好的柔性和疏水性能,而且不“掉粉掉渣”,具有良好的耐水洗性能。该柔性超疏水气凝胶材料在室温下的热导率为0.03~0.05W/(m·K)。
南京工业大学 2021-01-12
轻质柔性防护材料的研制
剪切增稠材料(剪切增稠液/STF、剪切增稠胶/STG)在平衡状态下,表现为 分散胶体形式,而在高速剪切力作用时,其粘度急剧增加,表现出固体行为。利 用这种特性,将其浸渗高性能纤维或与弹性体泡沫基体材料复合,可制备得到具 有不同防护功能的轻质柔性防护材料。该系列防护材料具有质轻、高强、高模、 耐冲击等性能;可广泛用于交通工具、体育用品、军事、安全防护等领域。 2 关键技术 (1)创新要点 材料在常态下保持松弛的状态,柔软而具有弹性,一旦遭到剧烈撞击或挤压 的时候,分子间立刻相互锁定,迅速收紧变硬从而消化外力,形成一层防护层, 当外力消失后,材料会回复到它最初的松弛软弹状态。它可以在纳米秒时内在不 同的冲击情况作出不同的反应。 (2)产品性能3 知识产权及项目获奖情况 (1)一种轻型柔质液态性防刺材料及其制备方法 ZL2011 1 0079852.0 (2)一种多元分散相阻燃型剪切增稠液体及其制备方法与应用 ZL20111 0093256.8 4 项目成熟度 成熟度 5 级 5 投资期望及应用情况 可广泛用于交通工具、体育用品、军事、安全防护等领域。 
江南大学 2021-04-13
柔性有机热电薄膜的研究
未经处理的PEDOT:PSS聚合物在成膜后反复弯曲不到十次循环就会出现明显裂纹,完全无法满足柔性热电器件的要求。改善PEDOT:PSS薄膜的机械柔性成为首要任务。李其锴在阅读大量的文献后,提出加入离子液体增加导电高分子链间相互作用力,形成交联结构,从而实现机械性能的改善目的。在试验过程中尝试过多种离子液体,最终选定了表现较优的LiTFSI。实验结果出乎意料,新型的柔性有机热电薄膜10000次循环后仍保持稳定的电性能。此外,该LiTFSI/PEDOT:PSS复合柔性有机热电薄膜的电学性能较未处理的PEDOT:PSS薄膜提高了近2个数量级,其功率因子达到75μW·m-1K-2,拉伸应变达到了20%以上。 目前,发展兼具力学柔性和热电性能的柔性热电薄膜材料与器件已经是刘玮书团队的重要发展方向。刘玮书团队相关研究成果已经提交专利申请,并会被应用到新型的电子皮肤的温觉仿真中。
南方科技大学 2021-04-13
柔性显示用聚酰亚胺材料
柔性显示用聚酰亚胺材料包含柔性 AMOLED 背板用聚酰亚胺浆料和可折叠显示屏用无色透明聚酰亚胺盖板膜。柔性 AMOLED 背板用聚酰亚胺浆料,存在技术难度大,生产难度高等困难。我们依托于配套电子行业龙头企业的产品进程便利,掌握和满足客户的不断变化的市场需求,与下游客户建立密切的市场和技术联系。我们通过和下游厂商一 起合作研发试验,已经可以达到规模量产的条件。可折叠显示屏用无色透明聚酰亚胺盖板膜,是聚酰亚胺薄膜的难点中的难点。聚酰亚胺薄膜本色为琥珀色,通过分子改性, 使用不同的二胺二酐单体实现无色透明。可折叠显示用无色透明聚酰亚胺盖板膜,不仅仅要求无色透明,还要求杨氏模量大,线性膨胀系数小,也要求达到光学级使用要求。 由于光学级聚酰亚胺薄膜设备,没有成熟设备,需要我们 独立自主研发。国内在这一块,离国外差距异常巨大。我们当前已经通过多元单体共聚完成无色透明、杨氏模量和线性膨胀系数的要求。光学级量产线已经完成设备设计, 准备进行设备制造 。
中国科学技术大学 2021-04-14
柔性电子多维感知及应用
具有高灵敏和多维集成的柔性感知电子器件在可穿戴健康监测和智能机器人等领域具有广阔的应用前景,是当今重要前沿研究方向之一。现有国内外柔性感知在高灵敏测量、多感知集成、低信号耦合、低成本加工上存在技术瓶颈,实际应用面临巨大挑战。针对这一问题,团队原创地提出一种基于热感应的多维传感新机理,利用热敏膜和外界的传导/对流换热对自身电阻的调控,实现
清华大学 2021-04-14
柔性电子与智能集成系统
面向并紧密结合实际工程需要和重大社会需求,发展了多个系列的柔性电子器件、电路模块、集成化系统及可视化软件界面。 一、项目分类 关键核心技术突破 二、成果简介 面向并紧密结合实际工程需要和重大社会需求,发展了多个系列的柔性电子器件、电路模块、集成化系统及可视化软件界面。包括:(1)“基于RFID的柔性电路及系统”,研制的RFID柔性电路模块集成在消防人员的头盔上,发展了一款可穿戴RFID人员识别和搜救系统;(2)“基于透明电路的超宽带无线定位智能眼镜”,创新性地将UWB无线定位技术和透明电路结合在一起,研制出了一款可进行实时无线探测定位的智能眼镜,实测无线定位距离300米以上,定位精度10cm以内;(3)“基于全柔性电路集成的智能口罩及无线实时呼吸监测系统实现”,研制了搭载多传感器芯片的柔性电路无线模块,并集成到口罩中实现对人呼吸健康的实时监测,并通过云平台和开发的手机端App进行发热、咳嗽、呼吸频率异常等症状的预警;(4)“面向多载体的UWB超宽带单基站无线定位系统”,已在大型隧道工程现场进行了推广应用,用于地下空间施工车辆、人员的无线定位、监测和安全管控,具有易布置、远距离、高精度的突出特点。
西南交通大学 2022-09-13
柔性薄膜超级电容器
随着便携式电子设备的快速发展,将微型电子设备运用到可穿戴设备或者作为生物植入物的可行性越来越大。用柔性电子器件来替代传统的硬质电子器件的重要性也愈加凸显,如何解决柔性电子设备的储能问题,是实现这些可能性的重要因素之一。 本成果设计并制备了一种新型柔性微型超级电容器,其具有制备工艺简单,成本较低,适用于各种粉末状电极材料等特点。
电子科技大学 2015-12-24
一种适用于循环肿瘤细胞捕获的微流控芯片
癌症从发生到临床发现往往需要10年的时间,癌症治疗的根本途径是早期发现或者对已转移瘤能有效治疗。循环肿瘤细胞(circulatingtumor cells, CTC)是指从原位瘤脱落下来进入到循环系统尤其是血液中的肿瘤细胞。作为液态活检核心靶标的CTC,不仅可用于癌症转移前的早期筛查,而且在临床肿瘤的分期、预后、特异性药物筛选、疗效检测、治疗和复发监测等方面都具有极其重要的临床应用价值。然而由于CTC在血液中数量极其稀少(约1-100个/mL),其高效高准确捕获一直是科学前沿难题和临床应用的关键障碍。 现有的CTC检测方法仍存在较大的局限,包括检测准确度不足、成本高、效率低、时间长以及检测条件苛刻等。本项目提出的新型微流控芯片设计,将基于流线的降速结构和基于过滤的捕获结构有机整合,实现了CTC特异性的汇聚和保留,同时将部分白细胞和红细胞分流到出口。每经过一个这样的降速结构,CTC就被浓缩一次,白细胞和红细胞被分走一部分。更重要的是,每一个单元液流速度均得到了显著下降(变为原来的1/2)。经过多组这样的降速结构,液流流入捕获结构,此时流速已经非常缓慢,利用CTC和其他血细胞的尺寸和形变差异,通过三棱柱阵列能实现CTC的高效捕获。总体来说,本项目所提出的微流控芯片能在很大流速范围内(5-40 mL/h)都实现高捕获效率(高达94.8%)。此外,芯片上捕获到的CTC的纯度也较高(高达4log白细胞去除率)。临床癌症患者患者双盲测试结果详实准确率达到100%。运用本项目中的微流控芯片,将实验室培养的宫颈癌HeLa细胞掺杂到健康血液中,以模拟癌症患者血液,在很大流速范围内(5-40 mL/h)都能实现高捕获效率(高达94.8%)。同时,为了证明此微流控芯片的普适性,测试了四种实验室细胞系,包括乳腺癌细胞系MCF-7和MDA-MB-231,宫颈癌细胞系HeLa和肺癌细胞系NCl-H226,捕获效率均稳定在91.3%以上。此外,也设置了不同的癌细胞密度以模拟实际的癌症患者血液,捕获效率近似为96.2%。随后,将本项目应用于临床,对11例癌症患者血液中的CTC进行检测,检出率高达100%,CTC个数从6-117个/mL不等,平均值31个/mL,中位数25个/mL。这些研究表明本项目中的微流控芯片能实现癌症患者的早期检测。本项目实现对癌症患者血液中的循环肿瘤细胞的单细胞灵敏度和高特异性的的捕获,由于其成本低,方便快速,效率高,对操作条件不敏感等,因而非常适合大规模应用于临床,实现癌症的早期诊断、实时动态监测和阻断转移等效果。
北京大学 2021-04-11
直驱永磁同步风力发电机组风能捕获跟踪控制方法
本发明公布了一种直驱永磁同步风力发电机组风能捕获跟踪控制方法,属于风力发电机组运行控制技 术领域。本发明控制方法包括如下步骤:首先,在机组启动并网刚开始发电的过程中,调节机组的转速ω; 其次,风速改变时,根据风速传感器测量的风速的相对变化量增加或减少的方向,确定机组转速控制需要 变化的增加或减少的方向,根据风速测量值相对量变化的大小,由叶尖速比λ计算表达式,计算确定转速所 需要的控制变化量;再次,通过增加或减少机组输出功率的粗调节;最后,使风轮机吸收的机械功率Pm 满 足dPm/dω=0的条件,使机组运行于CP-λ曲线的顶点或与其相当接近的点。本发明能实现对直驱永磁同步 风力发电机组最大风能捕获的快速跟踪控制,提高机组的发电效益。
南京工程学院 2021-04-11
一种适用于循环肿瘤细胞捕获的微流控芯片
癌症从发生到临床发现往往需要10年的时间,癌症治疗的根本途径是早期发现或者对已转移瘤能有效治疗。循环肿瘤细胞(circulatingtumor cells, CTC)是指从原位瘤脱落下来进入到循环系统尤其是血液中的肿瘤细胞。作为液态活检核心靶标的CTC,不仅可用于癌症转移前的早期筛查,而且在临床肿瘤的分期、预后、特异性药物筛选、疗效检测、治疗和复发监测等方面都具有极其重要的临床应用价值。然而由于CTC在血液中数量极其稀少(约1-100个/mL),其高效高准确捕获一直是科学前沿难题和临床应用的关键障碍。 现有的CTC检测方法仍存在较大的局限,包括检测准确度不足、成本高、效率低、时间长以及检测条件苛刻等。本项目提出的新型微流控芯片设计,将基于流线的降速结构和基于过滤的捕获结构有机整合,实现了CTC特异性的汇聚和保留,同时将部分白细胞和红细胞分流到出口。每经过一个这样的降速结构,CTC就被浓缩一次,白细胞和红细胞被分走一部分。更重要的是,每一个单元液流速度均得到了显著下降(变为原来的1/2)。经过多组这样的降速结构,液流流入捕获结构,此时流速已经非常缓慢,利用CTC和其他血细胞的尺寸和形变差异,通过三棱柱阵列能实现CTC的高效捕获。总体来说,本项目所提出的微流控芯片能在很大流速范围内(5-40 mL/h)都实现高捕获效率(高达94.8%)。此外,芯片上捕获到的CTC的纯度也较高(高达4log白细胞去除率)。临床癌症患者患者双盲测试结果详实准确率达到100%。
北京大学 2021-02-01
首页 上一页 1 2
  • ...
  • 11 12 13
  • ...
  • 119 120 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1