高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
物联网智慧灯控系统
南京邮电大学 2021-04-14
聚合物驱破乳剂
本项目以聚合物驱采出液为研发的重点,以TL为起始剂(TL为多乙烯多胺、甲醛、双酚A为原料合成的起始剂)合成开发出具有多枝型的聚醚原油破乳剂,形成了包括15种二嵌段、15种三嵌段、3种三嵌段的破乳剂系列产品,目前已完成中试试验。
山东大学 2021-04-14
聚合物复合PTC材料
聚合物复合PTC材料是近年来在国际上发展很快的高科技产品,该种材料其电阻随温度作非线性变化,具有正温度系数(即所谓PTC特性),当温度上升到某一值时,电阻急剧增加。利用这一特性做出的自控温加热材料,能根据环境温度自动调节输出功率,具有保温和控温的功能。美国将此项技术列为不转让类技术。 与陶瓷PTC材料相比,聚物合复合PTC材料具有成本低,易于加工
西安交通大学 2021-01-12
仪表智能识别物联网系统
仪表智能识别物联网系统由智能读表相机、智能应用系统云平台套件以及大数据智能分析服务组成,通过智能采控终端采集仪器仪表的各项数据,将数据上传到网络服务器,存储、整理分析,通过智能应用系统实现实时在线监控、记录、查询、统计、分析、修改、报警等操作,实现远程智能化管理,提高企业智能化管理水平。
霍夫纳格智能科技(嘉兴)有限公司 2022-01-21
智能物联中控主机
产品详细介绍      校园安全控制中心专用设备将学校原有的广播系统、监控系统等进行融合入,使用手机即可对设备进行远程操控管理,同时强调物联集成理念,预留多项端口,可接入校园更多智能硬件设备。该硬件产品为工业级设计,嵌入式系统自动升级免维护,国家教育机构认证许可,7*24小时不间断工作,确保设备质量稳定,同时提供高效优质的售后运维服务。      A8200 校园安全智能物联中控主机技术特点:         √采用钢结构,有较高的防磁、防尘、防冲击的能力;         √采用7寸工业级加固触摸屏,简单易用的触摸屏操作;         √工业级主板设计,处理运行速度更快,性能更胜一筹,适合长时间运行; √嵌入式Android系统; √通信制式支持以太网络、GSM、WCDMA等制式; √具有掉电记忆功能,重新上电自动恢复运行,不丢失任何系统数据; √支持远程自动升级; √网络自动时间校对; √智能识别敏感; √模块化设计: a) 本机权限管理及授权信息设置;  b) 存储信息播控逻辑控制模块;     c) TTS语音引擎模块; d) 音频输入啸叫抑制。
深圳市巨龙科教网络有限公司 2021-08-23
RFID物联网读写器
产品详细介绍RFID物联网读写器 FR1001小型台式发卡机 产品介绍 FR1001小型台式发卡机是北京泰格瑞德科技完全基于自主知识产权、专门为配合用户在后台或者管理中心进行发卡管理,而生产的UHF 发卡器。 本设备置于台面供操作员发放电子标签、进行查询或提供权限管理使用。除了发卡外,该设备也在图书和文档管理等方面得到广泛应用; 本设备外型小巧便于携带,可以进行读卡、写卡、授权、格式化等操作;具有读写速度快、识别率高、可同时操作多个标签; 技术参数 工作频率:ISM 902-928MHZ 工作模式:跳频工作、定频工作或软件可调 功率可调范围:0dBm~26dBm 天  线:内置天线 通信接口:USB 通信速率:Up to 57,600bps 标签协议:EPC C1 Co Gen2, ISO-18000-6C 读取距离:15cm~1m 电  源:+5V DC, less than 1Amps 尺  寸:120*95*30 mm 重  量:0.4KG 工作温度:-20℃~+65℃ 存储温度:-35℃~+85℃
泰格瑞德科技有限公司 2021-08-23
大型仪器智能物联网系统
系统是基于物联网技术的保护仪,实现信息发布、在线预约、培训授权、刷卡使用、收费结算、效益统计、数据上报等;可扩展试剂耗材、安全准入、安全检查、电子门牌、动物房(中心),并与统一身份认证、资产、财务、门禁、监控对接。 科大奥锐自主研发的大型仪器共享管理系统,是专门用于高校及科研院所,管理和实现大型仪器的开放和共享。该系统是基于不改装仪器本身,基于物联网技术的设备监控保护仪,实现大型仪器开放共享,实现仪器信息开放和共享、网上预约和审核、仪器使用授权、智能刷卡认证和使用、计费收费和结算、仪器安全和使用监控保护、实验数据传输和共享、效益评估和统计、上级部门数据对接等。 仪器终端 扩展终端 功能特点
安徽省科大奥锐科技有限公司 2021-02-01
由聚合物纳米中空胶囊制备绝热聚合物材料的方法
本发明公开了一种由聚合物纳米中空胶囊制备超级绝热聚合物材料的方法,该方法首先利用双亲性大分子可逆加成断裂链转移试剂制备聚合物纳米胶囊,然后制备胶囊间交联剂,最后按胶囊与胶囊间交联剂质量比2.5:1至0.8:1的比例,将胶囊间交联剂与聚合物纳米胶囊乳液混合,调节pH至3.0~6.8,于60~90oC温度下反应30min至24h,使乳液凝胶化,再通过四氢呋喃置换出纳米胶囊中的核芯石蜡,真空干燥得到聚合物纳米多孔材料;本发明制备工艺简单,孔隙率和孔径大小可以通过改变纳米胶囊乳液的固含量、醚化三聚氰胺甲醛树脂的用量以及纳米中空胶囊自身空隙率调节,并且该多孔材料相对于传统的绝热材料具有很高的力学强度。
浙江大学 2021-04-13
特高压设备用增强型环氧树脂体系开发与应用关键技术
芳纶基环氧树脂开发与应用 1、技术分析 低粘度液体芳纶基环氧树脂,既保留芳纶纤维的骨架结构又引入环氧基团,还引入柔性的醚键,与芳纶纤维及环氧树脂的相容性均较好,起到桥梁作用,可在不破坏芳纶纤维本体结构情况下,解决了芳纶纤维与环氧树脂基体间界面粘结性问题,同时也能增加环氧树脂基体的韧性;不改变现有复合材料生产工艺,可操作性强,可实现工业化大规模生产,具有非常强的国内外竞争力及产业化应用前景。 2、应用范围及目前应用状态 特种环氧树脂复合材料相比于金属材料,具有轻质、耐磨损的性能优势,用于大型客机、商务飞机、固体火箭发动机壳体和卫星等结构部件,可有效减轻机身自重,节约飞机燃料的使用。在新一代通信技术方面,芳纶可增加光缆的刚性和强度,广泛应用于室内外光纤和电力缆的增强件,对推动我国新一代通信技术的发展起到重要作用。在电子电器相关领域,日本松下电器公司在浸渗高耐热的环氧树脂固化芳纶无纺布上贴合铜箔而制成印刷线路基板。特种环氧树脂复合材料兼具优异的电绝缘和耐热性能等优点,可作为耐高温绝缘材料应用于电动机、变压器、电抗器等电力设备中,同时因其优异的力学性能也可用于绝缘拉杆及绝缘支撑器件。 目前应用状态:完成芳纶基环氧树脂增强E-51固化物应用研究,探索了芳纶基环氧树脂对芳纶织物-环氧树脂复合材料之间的界面性能的影响。 (1)芳纶基环氧树脂增强E-51固化物应用研究 选择环氧值为最大条件下制备的芳纶基环氧树脂,将芳纶基环氧树脂添加量分别为 E-51质量分数的2.5%、5%、7.5%与 E-51 混合后,经二乙烯三胺固化,根据国标制得标准样条,样条如图1所示。 (a)拉伸样条      (b)弯曲、耐冲击样条图1  固化样条 表1 掺入百分比的2号样品的固化物力学性能 2号样品掺入量 /% 拉伸强度 /MPa 断裂伸长率 /% 弯曲强度 /MPa 冲击强度 kJ/m2 0 31.55 1.65 107.08 5.42 2.5 60.08 3.11 96.04 7.96 5 68.94 3.96 128.65 11.25 7.5 44.64 2.54 97.07 11.34 如表1所示,掺入量的增加,固化物拉伸强度、断裂伸长率和弯曲强度均呈现先增后减趋势,在E-51中添加5%时,弯曲强度略有提高,拉伸强度提高2.2倍,断裂伸长率提高2.4倍,抗冲击强度提高2.1倍。主要是因为芳纶基环氧树脂液体本身具有刚性苯环,同时也含有柔性的烷基侧链,并以环氧基封端,提高了与树脂基体的相容性,将刚性结构交联到体系当中,提高了体系的力学强度,因此掺入芳纶基环氧树脂液体后拉伸强度和断裂伸长率均提高了。而冲击强度保持上升趋势,掺入量超过5%后基本不再发生变化。 (2)芳纶基环氧树脂对芳纶织物-环氧树脂复合材料制备 取一定量环氧树脂,常温下加入一定比例的芳纶基环氧树脂,再将固化剂(DEDDM)加入到上述混合物中(胺值与环氧值等当量),搅拌均匀后,再按真空干燥箱中,抽真空30min。采用手糊法制备芳纶织物/环氧树脂复合材料,铺好后盖上离型纸放入80℃压机中加压,使树脂与芳纶纤维布浸渍,将平板硫化机升温至140℃,将脱模布和离型纸放入,铺厚3mm放在模具中,将140℃/1MPa下保压15min,再将压力升至10MPa,保温固化2.5h,冷却至室温开模,如图2所示。 图2  芳纶织物-环氧树脂复合材料 3、前景及经济社会效益分析 本项目根据芳纶纤维和环氧树脂的结构特点,设计和制备一种具有“两亲结构”的新型芳纶基环氧树脂。该树脂具有芳纶的骨架结构和环氧丙烷的侧链。分子中的芳纶骨架部分与芳纶织物纤维的结构相同,有利于两者之间的互相亲和。而芳纶基环氧树脂分子中的环氧基团与环氧树脂的结构具有相似性,与环氧树脂具有很好的相容性。芳纶基环氧树脂能广泛应用于电缆增强、防弹背心、运动织物、登山绳、防割手套和绝缘纸产品中,带动更多收益效应。 蓖麻油基环氧树脂开发与应用 1.研究背景及意义 目前我国已是世界上塑料制品生产和消费最大的国家,环氧树脂具有优异的粘接强度,良好的介电性能,制品尺寸稳定性好、硬度高、柔韧性较好、对碱及大部分溶剂稳定,是一种常见的应用非常广泛的热固性树脂塑料,目前全球环氧树脂年产量达到250万吨左右,需求量巨大。其中双酚A型环氧树脂用量最广泛,占环氧树脂总量的85%以上,67%以上的双酚A型环氧树脂则依赖于石化资源,同时其存在着毒性问题。 目前,国内外对于生物基热固性树脂的研究相对越来越热,其中,植物油以其来源广、产量大、价格低的优势,而备受广泛研究,目前有关植物油基增塑剂和环氧树脂的研究主要包括大豆油基、桐油基、蓖麻油基、甘油基、松香基等。 蓖麻是世界十大油料和四大不可食用油料作物之一,我国是世界上栽培蓖麻和生产蓖麻籽的主要国家之一,种植面积和产量曾一度跃居世界第一,蓖麻油是重要的化工原料,称作“土地里种出的石油”。 蓖麻油的基本结构: 羟基平均官能度约2.7,羟值为156~165 mg/g,碘值80~90 g/100g,皂化值为170~190 mg/g。 2.技术路线 (1)环氧蓖麻油缩水甘油醚的合成(ECOGE) 环氧蓖麻油缩水甘油醚的合成采用液体酸多相催化法,其原理是有机酸被过氧化氢预氧化为过氧化有机酸,再将蓖麻油缩水甘油醚氧化为环氧蓖麻油缩水甘油醚,反应原理如下式所示。 (2)蓖麻油多元醇的合成(COP) 选择不同催化反应体系,使用甲醇、乙醇、丙烯醇、苯酚、苯甲酸、丙烯酸等不同柔性、刚性基团对环氧蓖麻油环氧基团进行开环加成,增加分子中羟基,制备蓖麻油多元醇,为下一步蓖麻油多缩水甘油醚制备提供基础。此反应过程中,酸催化体系下发生亲电加成反应,碱催化体系下发生亲核加成反应,在开环过程中,注意避免酯键发生水解或者酯交换反应。 (3)蓖麻油多缩水甘油醚的合成(COPGE) 将上述蓖麻油多元醇与环氧氯丙烷反应,生成蓖麻油多缩水甘油醚,此反应有两种方法合成,一种是羟基与环氧氯丙烷发生开环闭环两步反应,最终生成缩水甘油醚;第二种方法是羟基和环氧氯丙烷直接一步法制得缩水甘油醚,但是环氧氯丙烷用量大。 3 蓖麻油基环氧树脂的结构与性能参数 (1)蓖麻油三缩水甘油醚(XY966) 环氧值:0.15~0.25 eq/100g 粘度(25℃):150~450mPa·s (2)氢化蓖麻油三缩水甘油醚(HCOGE) 环氧值 : 0.18 eq/100g 粘度(25℃) : 850 mPa·s (3)环氧蓖麻油三缩水甘油醚(ECOGE) 环氧值 :0.38 mol/100g 粘度(25℃) :650 mPa·s  (4)苯氧基蓖麻油多缩水甘油醚(POCOGE) 环氧值:0.24 eq/100g; 粘度(25℃) :950 mPa·s (4)苯酚-蓖麻油基多缩水甘油醚(PCOGE) 环氧值: 0.24 eq/100g; 粘度(25℃) : 1550 mPa·s (5)蓖麻油九缩水甘油醚( CONGE ) 环氧值:0.31 eq/100g, 粘度(25℃) :6050 mPa·s 3.本项目的特色与创新之处 (1)项目特色 1)本研究所采用的原料蓖麻油是植物基可再生资源,所合成的蓖麻油基环氧树脂是低毒环保可降解物质; 2)本研究采用酰化和环氧化反应,分别制得具有很好柔韧性的环氧乙酰蓖麻油,和具有很好刚性的环氧苯甲酰蓖麻油两种增塑剂; 3)本研究以柔性的蓖麻油为原料,引入刚性基团,合成一系列柔性和刚柔兼备蓖麻油基环氧树脂。 (2)项目创新之处 1)研究采用酰化和环氧化反应,分别制得具有很好柔韧性的环氧乙酰蓖麻油,和具有很好刚性的环氧苯甲酰蓖麻油两种增塑剂,反应步骤少,处理简单。其中环氧乙酰蓖麻油拉伸效率高于DOTP,而环氧苯甲酰蓖麻油的拉伸强度和断裂伸长率均高于DOTP,可应用于刚性需求高的场合; 2)本研究将蓖麻油碳碳双键环氧化后开环,后与环氧氯丙烷反应制得高环氧值的蓖麻油基环氧树脂,提高了固化物的交联密度,提高了环氧树脂的拉伸、弯曲等性能。 3)本研究在柔性的蓖麻油分子链中引入刚性基团,解决了蓖麻油基合成一系列刚柔兼备蓖麻油基环氧树脂,赋予环氧树脂配方良好的柔性、抗冲击性和耐热冲击性能。
南京林业大学 2021-05-10
一种高体积稳定性不烧滑板用改性树脂及其制备方法
小试阶段/n本成果属于耐火材料用改性酚醛树脂技术领域。具体涉及一种高体积稳定性不烧滑板用改性树脂及其制备方法。目前铝碳耐火材料广泛采用酚醛树脂作为结合剂,酚醛树脂与焦油沥青结合剂相比,具有热硬性、干燥强度大和环境污染小的优点,但由于酚醛树脂为有机高分子化合物,支链少,对无机材料的润湿程度较低,固化后形成的网络结构不够致密,使得以酚醛树脂结合的铝碳耐火材料存在常温强度不足的问题,在中温阶段由于酚醛树脂的裂解导致结合强度较低。本成果旨在克服现有技术缺陷,目的是提供一种生产工艺简单、生产成本较低的铝碳耐火
武汉科技大学 2021-01-12
首页 上一页 1 2
  • ...
  • 25 26 27
  • ...
  • 135 136 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1