高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
动脉血液成份检测仪
成果与项目的背景及主要用途:无创检测动脉血液成分中的血糖、血脂和蛋白质等。 技术原理与工艺流程简介:根据课题组提出的动态光谱理论研制。技术水平及专利与获奖情况: [1]中国发明专利:无创动脉血液成分测量仪器及其测量方法 ,专利申请号:02121372.0。 [2]中国发明专利:动脉血液成分检测的空域分光差分光谱仪及检测方法,专利申请号:200410019316.1。 [3] 中国发明专利:动脉血液成分检测的时域分光差分光谱仪及检测方法,专利申请号:200410019317.6。 [4] 中国发明专利:组织成分检测的变光路时域分光差分光谱仪及检测方法,专利申请号:200410019320.8。 [5]中国发明专利:组织成分检测的双探头差分光谱仪及检测方法,专利申请号:200410019318.0。 [6]中国发明专利:组织成分检测的变光路空域分光差分光谱仪及检测方法,专利申请号:200410019319.5。 应用前景分析及效益预测:市场巨大、成本低、使用便捷。 应用领域:医院和家庭保健。 技术转化条件(包括:原料、设备、厂房面积的要求及投资规模):不需特殊设备和条件。 合作方式及条件:技术入门费+产值提成:400 万+5%。
天津大学 2021-04-11
基于光电读出技术的浓度检测
浓度是衡量工业产品质量的一项非常重要的指标,采用光学原理测量浓度的方法如旋光法、分光光度法、干涉法、折射率法等,光学方法采用非接触式测量手段能够方便快速测量液体浓度,但诸多光学方法存在成本高、灵敏度低和测量范围窄等不足之处,为了避免现有技术所存在的不足,提出了一种基于光电读出技术的浓度检测仪,在降低装置成本的基础上能有效提高光电检测透明溶液浓度的灵敏度,并实现设备小型化。
安徽理工大学 2021-04-13
图像式纱线条干检测系统
本项目检测系统通过高帧频面阵相机动态实时采集纱线图像,配合鲁棒性图像处理与参数检测算法,实现对纱线条干均匀度的全面评价,建立电子黑板和电子织物构建模型,实现纱线条干均匀性的可视化,预测纱线条干在黑板和织物中的外观效应。该项目同时可用于纱疵分类、竹节纱参数检测以及纱线等级预测评定。 关键技术 (1)纱线传动控制各单元的协调与配合:包括传动装置与采集设备各组件的配合设计,纱管退绕装置与主动轮连轴传动时的张力控制,运行中纱线的抖动和跳动问题,暗箱、相机镜头和光源位置的优化调整以及纱线速度、光源亮度与相机帧频、曝光时间的配合问题。 (2)基于 C++与 Opencv 的多线程实时处理框架的搭建,在纱线图像采集的过程中,实现图像的边采集边处理,提高系统的实时性,缩短检测所用时间,杜绝纱线信息丢失现象,从根本解决纱线图像高速检测的问题。 (3)鲁棒性纱线图像处理算法的研发:包括配合实时检测的纱线图像分割算法的研发,相邻图像间重合部位查找算法的研发以及纱线图像可视化模块电子黑板构建算法和电子织物仿真算法的研发。 知识产权及项目获奖情况 已授权发明专利 2 项。发表相关 SCI 论文 6 篇,EI 论文 4 篇 项目成熟度 采用图像式纱线条干检测系统已对多种类型的纱线进行检测,并将检测结果与成熟的仪器和人工结果进行了对比,无论在段片段不匀、周期性不匀,还是相关性分析和长片段不匀方面,该检测系统都可获得与成熟仪器较为一致的结果。 
江南大学 2021-04-13
辐射检测仪,个人计量仪
产品详细介绍轻便小巧,便于携带,使用方便,操作简单 全中文界面标准软件,使用简单操作方便(可按客户需求定制) 2*2in Nai探测器(可按需求配置不同尺寸的各种探测器) 高性能精确度高,有1024道,2048道,4096道(可定制) 可自行设定报警阀值 准确的核素识别功能 标准核素库,用户可自由添加,删改,选用核素 大容量锂离子电池,充满电可以连续工作20小时 PDA掌上电脑,蓝牙数据通讯。PDA数据可传至电脑进一步分析处理。 手持式便携数字化能谱仪的主要特征: l      外接智能NaI(TI)探测器,内置GM管 l        NaI(TI) 探测器与主机用螺旋电缆连接,探测器伸到测量部位,可就近方便观察测量结果 l        三种工作方式:     a.剂量率测量 一 任何工作方式都兼顾剂量率测量 b.寻找放射源 c.实时核素识别 一 可存无数个核素库文件 l        可指示不同核素的剂量率贡献,可分别设置不同核素的报警阀值 l        核素识别采用了Genie2000软件完备成熟的分析处理核素识别技术。即便存在多种核素(4种以上),或者源放置在存储蓄(屏蔽影响)中,也能正确识别各种核素。同时指示是否存在核素库内没有编辑的未识别核素。 l        可识别核素种类(128种!),可同时识别核素多(同时识别数十种核素!) 高品质、可触摸操作彩色显示屏 一 国内市场独此一款! l        可选规格NaI(TI) 探测器规格:1.5″×1.5″,2″×2″,3″×3″ l        可配置中子探测器(慢化3H管) l        与计算机采用USB通讯,谱数据、核素库、刻度参数和分析步骤下载和上传 l        大容量:可存储512个1024道的谱 l        更多道数:4096道MCA l        独特的专利稳谱技术一 内置高稳定发光LED,随时实现稳谱。<±2%@–20℃~+50℃ l        可通过USB实现固件升级 l        时间预置:1~106S,(实时间/活时间) l        自动谱采集分析处理   2主要技术指标: l        计量(率)范围:10nSv∕h~100mSv∕h,10nSv-10Sv l        能量范围:50KeV~3MeV-NaI(TI),30KeV~1.4MeV-GM l        计数通过率:>50KCPS l        输入计数率:>500KCPS 售后服务 硬件免费保修三年; 软件终身免费升级 可根据用户需求定制软件、硬件功能  
北京龙骞鸿讯科技责任有限公司 2021-08-23
肿瘤个体化用药基因检测
山东翰康生物科技有限公司 2021-09-01
一种生物溶液浓度的光谱传感测试方法
本发明涉及一种生物溶液浓度的光谱传感测试方法,依据了包层介质的光学响应遵循的物理学因果性原理,根据因果性原理,包层折射率的实部
上海理工大学 2021-05-04
电子材料及器件低频噪声-可靠性测试平台
电子材料及器件噪声-可靠性测试平台,该系统是国内外首套电子器件噪声-可靠性分析系统。采用了基于虚拟仪器的微弱噪声测试、基于噪声的可靠性诊断方法、电子器件噪声的子波分析方法等关键技术,将子波分析用于噪声-可靠性表征,可对各种电子器件和集成电路模块进行噪声测试与分析、内部潜在缺陷诊断和无损预筛选。系统可以测量电子器件的各种噪声参数,同时对噪声进行频谱分析、子波分析、集总参数分析。具有实时检测、采集、和分析, 高精度、高可靠性、智能化、小体积的优点,良好的通用性和可升级性使其同时适用于科研和生产单位。
电子科技大学 2021-04-10
精密传动系统动态传动精度测试技术研究
该项目来源于部级科研课题,主要以精密传动系统为研究对象,建立了动态传动精度模型,分析了传动系统中各零件的加工误差、装配误差、间隙及齿轮啮合刚度、轴承刚度等因素对传动误差的影响;开发出传动误差测试系统,实现了传动误差的高精度测试,其测试精度为±2角秒,并可分析传动系统单项传动误差和各次谐波。 该传动误差测试系统可广泛应用于各种精密传动系统的误差测试与分析中,如齿轮机床、数控机床、精密减速机、工业机器人等的传动系统中。该项目由一支从事多年传动系统设计、制造的高水平科研团队承担,多年一直从事该产品的开发,积累了较丰富的设计制造经验,承担了多项国家863课题、国家重大专项课题、省部级课题等。
天津职业技术师范大学 2021-04-10
自动调平式秸秆起拔力测试仪
本实用新型涉及测量力的技术领域,尤其是一种自动调平式秸秆起拔力测试仪。包括竖直保持机构、夹紧机构、提升机构和支架;所述竖直保持机构包括工作台、球体套筒和压紧装置,球体套筒设置在工作台的中心位置处,且位于工作台内,球体套筒的底部固定有长方形凸起,球体套筒的内腔中设有提升机构,球体套筒的外表面呈球形,球体套筒的外表面与工作台相配合,球体套筒在工作台中转动,使提升机构和夹紧机构在重力作用下保持竖直方向,压紧装置的一端呈球形且与球体套筒接触;所述提升机构包括起拔手轮、螺纹套筒、起拔杆和应变式拉力传感器,起拔杆的中心设有空腔,起拔杆的底部与夹紧机构固定连接。其结构简单,操作方便,可以精确的测量秸秆起拔力。
青岛农业大学 2021-04-11
基于传感器的受电弓特性测试装置
研发阶段/n受电弓为电力牵引机车从接触网取得电能的电气设备,安装在机车或动车车顶上,负荷电流通过接触网和受电弓滑板接触获取,滑板与接触网间的接触压力、接触电阻、接触面积直接影响负荷电流的正常工作。在使用过程中接触压力不可过大或过小,否则增加机械磨耗或离线率;因此,受电弓的日常维护是机车维护的重要内容,如受电弓的接触压力、滑板磨损程度,以及滑板的水平度等。。受电弓受机车控制指令执行升弓和降弓操作,由气动控制,要求受电弓匀速上升或下降,在上升接近接触线时有一缓慢停滞,然后迅速接触接触线,而下降时,要求克服升弓弹簧的作用力,使受电弓迅速下降,脱离接触网。这就是受电弓特性,也是受电弓日常维护的重要内容。目前,受电弓的检测维护依然依靠卡尺、秒表等人工操作,存在较大的人为因素的影响,数据可靠性差,无法直观反映受电弓特性。部分有一定自动化程度的检测装置结构复杂,操作繁琐,不便于携带,并且滑板磨损程度与水平度等参数难以测量,尚没有测量受电弓的高度- 受力- 时间的特性测试,以及滑板磨损程度与水平度的测量。本发明公开了一种基于传感器的受电弓特性测试装置,该装置包括传感部、无线通信单元和上位机;所述传感部置于被测双臂受电弓滑板上,该装置为左右对称的两部分,中间为手柄,手柄下端安装有红外传感器;该装置的两侧安装有滑动式可折叠支臂,通过可折叠支臂固定在受电弓滑板上;支臂上设有超声波测距传感器;该装置顶端的手柄两侧设有与接触网接触的下凹沟道,该装置的底部平坦,安装有探针式阵列压力传感器;该装置内部设有与底板平行的三维加速度传感器,该装置内部还设有温度传感器;无线通信单元与各个传感器连接,将获取的传感器数据发送给上位机,上位机对传感器数据进行处理,并进行预判。。支持额度:。50。万元。承接单位:。湖北省。项目进展:。受电弓为电力牵引机车从接触网取得电能的电气设备,安装在机车或动车车顶上,负荷电流通过接触网和受电弓滑板接触获取,滑板与接触网间的接触压力、接触电阻、接触面积直接影响负荷电流的正常工作。在使用过程中接触压力不可过大或过小,否则增加机械磨耗或离线率;因此,受电弓的日常维护是机车维护的重要内容,如受电弓的接触压力、滑板磨损程度,以及滑板的水平度等。受电弓受机车控制指令执行升弓和降弓操作,由气动控制,要求受电弓匀速上升或下降,在上升接近接触线时有一缓慢停滞,然后迅速接触接触线,而下降时,要求克服升弓弹簧的作用力,使受电弓迅速下降,脱离接触网。这就是受电弓特性,也是受电弓日常维护的重要内容。目前,受电弓的检测维护依然依靠卡尺、秒表等人工操作,存在较大的人为因素的影响,数据可靠性差,无法直观反映受电弓特性。部分有一定自动化程度的检测装置结构复杂,操作繁琐,不便于携带,并且滑板磨损程度与水平度等参数难以测量,尚没有测量受电弓的高度- 受力- 时间的特性测试,以及滑板磨损程度与水平度的测量。本发明公开了一种基于传感器的受电弓特性测试装置,该装置包括传感部、无线通信单元和上位机;所述传感部置于被测双臂受电弓滑板上,该装置为左右对称的两部分,中间为手柄,手柄下端安装有红外传感器;该装置的两侧安装有滑动式可折叠支臂,通过可折叠支臂固定在受电弓滑板上;支臂上设有超声波测距传感器;该装置顶端的手柄两侧设有与接触网接触的下凹沟道,该装置的底部平坦,安装有探针式阵列压力传感器;该装置内部设有与底板平行的三维加速度传感器,该装置内部还设有温度传感器;无线通信单元与各个传感器连接,将获取的传感器数据发送给上位机,上位机对传感器数据进行处理,并进行预判。 本项目为受电弓质量检测装置,可用于高铁机车检修,市场前景广阔。。项目基本内容:。受电弓为电力牵引机车从接触网取得电能的电气设备,安装在机车或动车车顶上,负荷电流通过接触网和受电弓滑板接触获取,滑板与接触网间的接触压力、接触电阻、接触面积直接影响负荷电流的正常工作。在使用过程中接触压力不可过大或过小,否则增加机械磨耗或离线率;因此,受电弓的日常维护是机车维护的重要内容,如受电弓的接触压力、滑板磨损程度,以及滑板的水平度等。受电弓受机车控制指令执行升弓和降弓操作,由气动控制,要求受电弓匀速上升或下降,在上升接近接触线时有一缓慢停滞,然后迅速接触接触线,而下降时,要求克服升弓弹簧的作用力,使受电弓迅速下降,脱离接触网。这就是受电弓特性,也是受电弓日常维护的重要内容。目前,受电弓的检测维护依然依靠卡尺、秒表等人工操作,存在较大的人为因素的影响,数据可靠性差,无法直观反映受电弓特性。部分有一定自动化程度的检测装置结构复杂,操作繁琐,不便于携带,并且滑板磨损程度与水平度等参数难以测量,尚没有测量受电弓的高度- 受力- 时间的特性测试,以及滑板磨损程度与水平度的测量。本发明公开了一种基于传感器的受电弓特性测试装置,该装置包括传感部、无线通信单元和上位机;所述传感部置于被测双臂受电弓滑板上,该装置为左右对称的两部分,中间为手柄,手柄下端安装有红外传感器;该装置的两侧安装有滑动式可折叠支臂,通过可折叠支臂固定在受电弓滑板上;支臂上设有超声波测距传感器;该装置顶端的手柄两侧设有与接触网接触的下凹沟道,该装置的底部平坦,安装有探针式阵列压力传感器;该装置内部设有与底板平行的三维加速度传感器,该装置内部还设有温度传感器;无线通信单元与各个传感器连接,将获取的传感器数据发送给上位机,上位机对传感器数据进行处理,并进行预判。
武汉工程大学 2021-04-11
首页 上一页 1 2
  • ...
  • 59 60 61
  • ...
  • 182 183 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1