高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
铜聚合物基微纳复合材料制备技术与成型机理
1、高密度接枝改性的 CNTs 纳米复合材料的制备 2、应用电场力协同制备聚合物复合材料 3、聚合物基微纳复合材料流变学及界面特性4、在 ACS Appl. Mater. Interfaces, Chem. Comm., Acta Biomater., Carbon,Macromolecules 等发表相关论文多篇,申请发明专利 40 余项,其中已授权 24 项。
上海理工大学 2021-01-12
铁‑铜‑铝氧化物复合催化剂的制备方法、产品及应用
本发明公开了一种铁‑铜‑铝氧化物复合催化剂的制备方法,包括:(1)将铝盐加入到甲酸/甲酸铵的缓冲溶液中,铝盐完全溶解后,加入介孔SBA‑15,吸附完成后,烘干,焙烧得到铝负载的SBA‑15样品;(2)将铝负载的SBA‑15样品置于含有铁离子和铜离子溶液中,浸渍完成后,烘干,可选择的进行焙烧,得到铁‑铜‑铝氧化物复合催化剂。本发明还公开上述制备方法制备得到的催化剂和该催化剂的应用方法。本发明通过Al对介孔材料SBA‑15进行修饰,获得良好Al2O3纳米层,继续负载双金属组分Fe和Cu之后,活性组分继续保持高度分散的纳米层,在中性条件下,催化剂有着良好的降解去除,显示出催化剂极高的催化活性。
浙江大学 2021-04-13
使用中间层扩散制备多层非晶合金与铜复合结构的方法
本发明公开了一种使用中间层扩散制备多层非晶合金与铜复合结构的方法,包括如下步骤:对非晶合金和铜片进行切割、研磨、抛光和清洗,同时用刀片将中间层划分成规定的尺寸,对非晶合金薄片,中间层以及铜薄片进行组装和固定,以形成固定后的工件,将固定后的工件放进真空扩散炉中,使中间层溶解于非晶合金薄片与铜薄片中实现扩散焊接。本发明使用中间层能够降低扩散温度,使得非晶合金薄板在扩散后中仍然保持非晶态。复合结构具有非晶合金的强度和铜的韧性,能阻断非晶合金塑性变形时剪切带的延伸,从而避免了纯非晶合金材料容易脆断的问题,增
华中科技大学 2021-04-14
电力电子模块用关键绝缘材料 (导热绝缘陶瓷覆铜DBC板)
在电力半导体模块的发展中,随着集成度的提高,体积减小,使得单位散热面积上的功耗增加,散热成为模块制造中的一个关键问题,而传统的模块结构(焊接式和压接式)已无法成功地解决散热问题。因此对处于散热底板和芯片之间的导热绝缘材料提出了新要求。目前,国内外电力电子行业所用此种材料一般是陶瓷-金属复合板结构,简称DBC板
西安交通大学 2021-01-12
一种制备花状铜纳米簇-石墨烯-泡沫镍材料的方法
本发明提供了一种制备花状铜纳米簇?石墨烯?泡沫镍复合材料的方法,主要包括以下工艺步骤:1.用化学气相沉积法(CVD)在泡沫镍基体上生长一层石墨烯,制备出石墨烯?泡沫镍基体,2.将上述石墨烯?泡沫镍基体材料直接浸入硫酸铜和L?精氨酸的混合溶液中,让其反应3?6h即得到花状铜纳米簇?石墨烯?泡沫镍复合材料。所制备的花状铜纳米簇由于其具有特殊的花形结构,大大增加了铜粒子的比表面积,使其在一些特殊领域,如气体传感,有广阔的应用前景。
东南大学 2021-04-11
植物纤维铅笔材料及其制作方法
本发明提供的是一种植物纤维铅笔材料及其制作方法.它由植物秸秆或种子壳,粘性粘结剂和减粘剂组成的,其中植物秸秆或种子壳与粘性粘结剂的体积比为0.9~1:0.8~1,减粘剂的加入量占植物秸秆或种子壳和粘性粘结剂总重量的1~3%,所述的粘性粘结剂是聚乙烯或聚丙烯中的一种或者是其任何比例的混合物,所述的减粘剂是石蜡或硬脂酸中的一种或者是其任何比例的混合物.本发明可以减少天然木材的消耗,提高铅笔的质量,降低铅笔的生产成本;有利于保护生态环境,减少环境污染.
哈尔滨商业大学 2021-05-04
一种盆栽植物叶片除尘清洗装置
本实用新型涉及一种应用于实验室盆栽植物或室内盆花叶片的灰尘清洗装置,能够清洗各种叶形的盆花叶片且不能够污染周围环境。
辽宁大学 2021-04-11
一种植物内生菌及其应用
本发明公开了一种植物内生菌,分类命名为巨大芽孢杆菌(Bacillus?megaterium),完整命名为巨大芽孢杆菌(Bacillus?megaterium)SAN1,该菌株已于2013年3月11日保藏在中国微生物菌种保藏管理委员会普通微生物中心(简称CGMCC),保藏编号为CGMCC?No.7295。本发明还公开了所述的植物内生菌在修复设施土壤次生盐渍化与镉复合污染中的应用。本发明提供的巨大芽孢杆菌CGMCC7295能够促进植物的生长,改善土壤理化性状,同时促进植物对Cd的吸收,有效的消除土壤中的Cd污染;并且能高效转化土壤的硝态氮,减轻次生盐渍化的危害;通过巨大芽孢杆菌CGMCC7295与植物的联合作用,可实现设施土壤次生盐渍化与重金属Cd复合污染的修复。
浙江大学 2021-04-11
植物密植条件下分枝减少的调控机制
华南农业大学亚热带农业资源保护与利用国家重点实验室、广东省省岭南现代农业重点实验室王海洋教授团队在国际著名学术期刊国际知名期刊《Nature Communications》(自然-通讯,IF5Y= 13.811) 在线发表了题为“Arabidopsis FHY3 and FAR1 integrate light and strigolactone signaling to regulate branching”的研究论文(论文链接地址https://www.nature.com/articles/s41467-020-15893-7),揭示了植物密植条件下分枝减少的调控机制。分枝(分蘖)数目是影响植株株型、产量和生物量的关键因素。但在密植栽培条件下,植物间的相互遮荫会诱发植物产生避荫反应,引起植株分枝(分蘖)数目急剧减少。例如,在密植条件下,水稻和小麦的分蘖数会受到抑制,从而影响单株产量。因此,生产上需要培育耐密植的作物品种以增加其群体产量。该研究团队前期研究发现植物可通过光敏色素信号途径感应密植条件下光信号的变化,调控下游miR156-SPL分子模块,进而控制植物的避荫反应 (Xie et al., 2017, Nature Communications,8,348,IF5Y = 11.831)。 此外,最近研究发现独脚金内酯是一种抑制植物分枝(分蘖)的主要植物激素。在模式植物拟南芥中, SMXL6/7/8三个同源基因编码独脚金内酯信号传导途径的关键抑制因子,当独脚金内酯信号途径被激活时,SMXL6/7/8三个蛋白会被蛋白酶体降解,从而达到抑制分枝的效果。但是目前光敏色素介导的光信号途径和独脚金内酯信号途径如何在密植栽培条件下协同调控植物分枝(分蘖)的分子机制尚不清楚。在本研究中,研究人员发现miR156-SPL分子模块的两个重要成员,SPL9和SPL15蛋白,可以直接激活下游分枝关键负调控因子BRC1的转录,从而抑制植株分枝的产生;光敏色素A (phyA) 信号通路中的两个重要信号传导因子FHY3/FAR1和独脚金内酯信号途径重要因子SMXL6/7/8都可以与SPL9/15两个蛋白互作,并抑制SPL9/15对BRC1的转录调控,从而促进植株分枝的产生。此外,研究还发现FHY3和FAR1能直接促进SMXL6和SMXL7的转录。在遮荫或密植栽培条件下,FHY3和FAR1蛋白水平下降,引起SMXL6和SMXL7的转录本和蛋白水平下降,使SPL9/15蛋白被释放出来,导致其下游基因BRC1的转录水平升高,从而抑制了植株分枝的产生。该研究首次从蛋白互作层面阐明了FHY3和FAR1通过整合植物外部光信号途径和植物内部独脚金内酯信号途径协同调控植物密植栽培条件下分枝发生的分子机制。 图注说明:拟南芥FHY3和FAR1蛋白整合植物外部光信号途径和植物内部独脚金内酯信号途径协同调控植物密植栽培条件下分枝发生2020年初,他们进一步发现,FHY3/FAR1也可以与植物年龄信号途径的三个关键因子SPL3/4/5互作,并抑制它们对下游开花基因FUL/LFY/AP1/MIR172C的激活作用,从而抑制开花 (Xie et al., 2020, Molecular Plant,13: 483–498,IF5Y = 8.489)。这些研究成果极大地完善了植物避荫反应的调控机理,同时可为耐密植作物新品种的培育提供理论指导。
华南农业大学 2021-04-11
揭示植物免疫多肽Pep家族的加工成熟机制
发现II型MC蛋白酶介导PROPEP1的加工机制,但Stael团队认为MC4是叶片中唯一介导PROPEP1加工的蛋白酶,而李剑峰团队发现包括MC4在内的多个II型MC家族蛋白酶在叶片PROPEP1的加工方面具有冗余功能。这两项研究为理解Pep信号转导在植物免疫以及其它生理活动中的功能及调控机制提供了新的认知。细菌鞭毛flg22通过受体FLS2/BAK1介导的信号转导激活PROPEP1表达,产生的PROPEP1前体定位于液胞膜表面。flg22 同时引起细胞内的Ca2+浓度升高,后者促进II型MC蛋白酶的自加工激活,进而可对PROPEP1进行加工。从液泡膜释放的Pep1进入细胞质,并通过未知的方式移动到细胞间隙,并被PEPR受体识别后激活或强化植物免疫。
中山大学 2021-04-13
首页 上一页 1 2
  • ...
  • 33 34 35
  • ...
  • 216 217 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1