高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
植物免疫团队康振生/张新梅组揭示小麦感病基因负调控小麦抗条锈病新机制
2022年3月,植物免疫团队康振生/张新梅组在小麦与条锈菌互作方面取得新进展,研究揭示了小麦感病基因负调控小麦抗条锈病的新机制。研究成果以“TaBln1negativelyregulateswheatresistancetostriperustbyreducingCa2+influx”为题在《PlantPhysiology》在线发表。植保学院2021级博士研究生郭双元为第一作者,生命学院张新梅副教授为通讯作者。
西北农林科技大学 2022-07-11
中山大学施苏华、何子文课题组在红树植物进化研究领域取得系列重要成果
为了进一步验证红树植物在全球气候变化下是否足够强健,研究人员对现存红树物种的历史群体大小动态变化分析,发现大多数红树物种在海平面快速变化时期发生了种群规模急剧减少和破碎分化。
中山大学 2022-05-30
广西大学合成生物学团队发现绿色植物中广泛保守的Met1泛素链水解分子开关
8月9日,我校生命科学与技术学院、亚热带农业生物资源保护与利用国家重点实验室何正国教授领衔的合成生物学团队与北京理工大学和北京科技大学相关团队合作联合在国际著名学术期刊《自然-通讯》(Nature Communications)发表题为《绿色植物OTUB亚家族中保守的Met1特异性基序使水稻OTUB1能够水解Met1泛素链》(Met1-specific Motifs conserved in OTUB subfamily of green plants enable rice OTUB1 to Hydrolyse Met1 Ubiquitin Chains)的研究论文。
广西大学 2022-09-27
国科大博士生导师周奕华团队取得植物输导组织稳健性维持机制研究新进展
分析了42份水稻核心种质中纹孔变异程度,发现纹孔大小与株高等性状正相关,揭示了细胞壁精细结构对农作物生长的重要影响。该研究借助多项前沿技术手段,发现了全新的多糖区隔结构,并阐明了该结构控制纹孔纹饰形成、调控导管生理功能稳健性的分子机理。 
中国科学院大学 2022-06-01
花生维生素E合成相关基因AhPK及其在提高植物维生素E含量和耐盐性中的应用
本发明提供了花生维生素E合成相关基因AhPK及其在提高植物维生素E含量和耐盐性中的应用,将该AhPK基因在花生中超量表达后,得到生育酚含量和活性最高的α生育酚含量显著提高的转基因植株。实验证明,将本发明的AhPK基因超量表达可显著提高花生叶片的维生素E含量,且可明显增强转基因花生种子的耐盐性。本发明的蛋白及其编码基因对于植物维生素E合成机制的研究,以及提高植物的维生素E含量、活性和植株的抗逆性具有重要的理论及实际意义,应用前景广阔。
青岛农业大学 2021-04-11
南京大学余林蔚、徐骏教授课题组在柔性衬底上“激光-液滴”自加热驱动纳米线超高速生长集成新突破
在大面积柔性衬底上直接生长集成高品质晶硅纳米线沟道是突破高性能柔性电子逻辑、可穿戴传感和显示等应用的关键技术难点。然而,高品质晶体沟道的获得往往依赖高温生长过程(>800 ℃)-- 这恰恰是柔性聚合物衬底(熔点<150 ℃)所无法承受的!为此,南京大学电子科学与工程学院余林蔚教授、徐骏教授课题组基于自主创新的平面固-液-固(IPSLS)纳米线生长模式(近期工作Refs. 1-4),探索了一种全新的“激光-液滴”自聚焦局域加热生长策略,突破了传统环境加热技术的限制,利用柔性聚合物衬底(聚酰亚胺,PI)和金属铟催化剂颗粒对特定激光(808 nm)辐照的高选择性吸收差异,实现仅在液滴/纳米线生长界面附近范围的高效局部加热,以驱动晶硅纳米线在柔性衬底上的超高速度生长:在不需要环境加热的室温“冷”环境下,其生长速度可以高达3.5 μm/s,比传统加热方式纳米线生长速度提高了3个数量级。值得一提的是,即便在此高速生长过程中,IPSLS纳米线的生长路径依然可以被精确引导定位,并成功展示了丰富的线形调控能力。此外,由于纳米金属液滴具有极小的热熔,通过调控激光照射时序,可以对纳米线生长动态过程进行前所未有的精确调控(例如,对生长液滴实现瞬间“激活和冷却”等操作),从而实现对超长纳米线的精准形貌/直径编码。基于此技术,成功在柔性PI衬底上生长高品质纳米线沟道,并制备了纳米线场效应晶体管(FET)器件,其电流开关比和亚阈值摆幅分别为>104和386 mV/dec。此“激光-液滴”选择性加热生长策略有望推广应用于:在各类大面积、低成本柔性衬底上的“冷”环境中,直接定位生长和集成高品质晶硅纳米线阵列,为推动各种高性能柔性电子器件的规模化应用提供关键的材料支撑和全新的技术路线。
南京大学 2021-02-01
清华团队提出多孔膜中催化剂取向生长策略,制备碱性电解水的有序化膜电极,将1m³氢气电耗降至3.83度
清华大学王保国教授团队从事膜分离和电化学工程的交叉领域科学研究,迄今已有近 20 年时间。他们从降低能耗角度出发,提出了“一体化”膜电极的概念,其核心是通过在多孔膜中,电催化剂原位取向生长策略,降低电子/气体/离子的传递阻力,从而提高电解水产氢速率。
清华大学 2023-08-09
西北农林科技大学植物免疫研究团队揭示了一种特殊基因调控小麦抗旱性的分子遗传机理
该研究发掘了小麦抗旱基因TaDTG6-B并揭示了其功能获得性等位变异调控小麦抗旱性的分子遗传机理。
西北农林科技大学 2022-10-13
揭示了LRP5的新功能,LRP5作为TGF-b/Smad2/3信号通路的共受体来调节肾纤维化,为肾脏
 研究发现,低密度脂蛋白受体相关蛋白5(LRP5)与肾脏纤维化密切相关,在糖尿病肾病和梗阻性肾病模型中,随着疾病的进展LRP5的表达量明显升高,并且主要分布在肾小管。采用LRP5基因敲除鼠进一步发现,下调LRP5确实能减轻肾脏纤维化;通过荧光染色,Co-IP与细胞组分分离等技术,进一步证明了LRP5直接与TGF-β受体结合,改变TGF-β受体在细胞膜上的呈现和内吞,从而影响了TGF-β/Smad2/3信号通路的激活,参与肾脏纤维化的进展。此研究首次在肾纤维化领域内揭示了LRP5的新功能,LRP5作为TGF-b/Smad2/3信号通路的共受体来调节肾纤维化,为肾脏疾病的治疗提供新靶点。
中山大学 2021-04-13
花生维生素E合成相关基因APG1、APG2在提高植物α生育酚含量和耐盐性中的应用
本发明提供了花生维生素E合成相关基因APG1、APG2在提高植物α生育酚含量和耐盐性中的应用,两基因APG1、APG2的氨基酸序列的同源性为98.6%。本发明经实验证明,将这2个基因分别在花生中超量表达后,得到活性最高的α生育酚含量明显提高的转基因植株,且可明显增强转基因花生种子和植株的耐盐性;将这2个基因的反义载体转入花生后,转基因植株的α生育酚含量明显减少。本发明的蛋白及其编码基因对于植物维生素E合成机制的研究,提高植物的α生育酚含量,改良植物的抗逆性具有重要的理论及实际意义,应用前景广阔。
青岛农业大学 2021-04-13
首页 上一页 1 2
  • ...
  • 42 43 44 45 46 47 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1