高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
肝癌靶向纳米药物
本项目提供了一种靶向肝癌细胞的纳米药物(LTAG-NPs)。该药 物以天然多糖搭载临床广泛使用的铂类抗癌药物,具有合成简便,成 分友好的特点,通过与肝(癌)细胞发生特异性结合,实现肝癌靶向 效果。药物在肝部高效富集并在肿瘤细胞中释药。因此,LTAG-NPs 在有效抑制肿瘤生长的同时,明显降低传统化疗药物强烈的毒副作用, 提高患者顺从度和安全性。具有较高临床应用价值和转化前景。 体外释药实验表明,在肿瘤细胞环境下,LTAG-NPs 4 小时释放 药物超过 20%,6 天药物全部释放,既在 6 天内缓慢持续释药;药物 代谢实验证明,LTAG-NPs 在注射小鼠体内 24 h 后仍保持较高药物 浓度,具有血液长循环效果;生物分布实验证明,纳米药物在肝部的 富集是传统化疗药物的 5-6 倍,明显降低了在肾脏的积累;对于同时 种有肝异位瘤和肺异位瘤的小鼠,LTAG-NPs 在肝异位瘤的富集量为 肺异位瘤的 2.5 倍,说明具有优异的肝肿瘤靶向能力。体内抑瘤实验 证明,纳米药物具有与传统化疗药物相当的抑瘤效果但毒副作用明显 降低,尤其是明显降低了肾毒性。大剂量注射传统化疗药物的小鼠在 5 天内全部死亡,而纳米药物组则保持存活率 100%,且小鼠体重稳 步上升,体征良好。 以上动物实验全部由医院完成并进行相关评价
南开大学 2021-04-13
Janus 药物共轭体
目前肿瘤化疗仍是大多数癌症患者不可缺少的治疗方法,但是化疗药物往往缺乏选择性,而且肿瘤细胞容易产生多药耐药性,严重影响化疗的效果。因此,研究可逆转肿瘤多药耐药性的功能性药物输送系统在提高化疗药物药效、降低毒副作用等方面将具有广阔的应用前景。纳米药物载体,如脂质体封装的抗癌药物在临床前和临床实验中已被证实能够通过降低毒性和增强疗效来提高治疗指数。然而,传统脂质体存在载药量低(一般<10%)、稳定性差、药物容易泄漏等问题,导致治疗效果不理想,并且容易引发机体的毒副作用。
北京大学 2021-04-11
西安交大科研人员发现超分子手性产生新机制
超分子手性的自发产生与放大机理是当前手性研究的一个重点与难点,对这一问题的探索将推动各类手性器件的构筑,深化对生命体起源的理解,拓展超分子体系的研究前沿。
西安交通大学 2022-04-22
手性醇的高效不对称催化氢化合成
项目简介: 手性醇是有机合成化学中非常重要的手性化合物,它是合成手性 药物、天然有机化合物等的重要手性中间体。目前已有很多手性醇的不对称合成方法。其中,酮的不对称催化氢化是合成手性醇最高效、 最原子经济且环境友好的方法之一。本项目可依据需要提供多种类型 手性醇合成的新技术,特别是光学活性手性芳基烷基醇等公斤级以上 合成工艺技术。 项目特色: 利用具有自主知识产权的手性合成核心技术,为医药企业等提供 各种类型的光学活性芳基烷基醇等多样性手性醇的不对称氢化合成 工艺技术。相应的合成工艺技术操作简单、条件温和、安全、环保, 能给企业带来效益。 提供的光学活性手性醇合成技术,具有原子经济、环境友好、效 率高、选择性好的特点,不会给环境带来污染。相应的手性醇合成新 工艺技术面向医药企业,在能给企业带来效益的同时,可促进人类的 健康和社会的可持续发展。
南开大学 2021-04-11
人工智能药物筛选、药物设计及毒性预测算法
本成果采用最新的深度学习和分子模拟算法,结合新一代分子特征化方法,开发了多种计算机模型,可用于药物开发中的多个阶段,为药物的快速设计开发提供一个完整的基于人工智能的解决方案。成果:1.药物毒性预测方法:传统的化合物毒性检测技术一般需要使用生化试验、细胞实验、甚至动物模型,这些方法不仅耗费大量时间,而且成本很高。使用计算模型进行有机化合物的毒性预测,所需投入较少,但产出巨大。特别是基于化合物的物理化学和结构特性的计算模型,甚至能够在化合物合成之前就对其进行预测,大大提高了效率,使其越来越受到欢迎。在进行体外和体内试验之前先使用计算机模型对化合物进行大规模的毒性筛选,能够更好地解决候选药物具有毒性的问题。我们建立了一套新的基于多种分子指纹和机器学习算法的化合物毒性预测集成学习算法,运用此集成学习算法建立了新的有机化合物致癌性、致突变性和肝毒性预测模型。我们分别建立了名为CarcinoPred-EL (http://112.126.70.33/toxicity/CarcinoPred-EL/, 致癌性预测)、MutagenPred-EL (http://112.126.70.33/toxicity/MutagenPred-EL/, 致突变性预测)、LiverToxPred-EL (http://112.126.70.33/toxicity/LiverToxPred-EL/, 肝毒性预测)的预测服务器,这些服务器能够为使用者提供更高效更便捷的预测技术服务。自2017年服务器发表起,我们已为国内外药物分子设计研究者提供了5000多次共计超过20多万个化合物的毒性预测服务。在有机化合物毒性预测研究方向,我们主要完成了化合物的细胞毒性、心脏毒性、生殖毒性、血脑屏障透过性、水生生物毒性预测模型,以及糖尿病早期筛查模型的开发,正在进行P450酶阻滞剂性预测模型、基于图神经网络的毒性预测算法研究、基于分子对接的化合物毒性预测研究等。相关研究成果已发表多篇学术论文(Zhang L., et al. Scientific Reports, 2017, 7: 2118. WOS被引次数80,ESI 1%高被引论文;Ai H., et al. Toxicological Sciences, 2018, 165: 100-107;Yin Z., et al. Journal of Applied Toxicology. 2019, 39(10): 1366-1377;Ai H., et al. Ecotoxicology and Environmental Safety. 2019, 179: 71-78;Liu M., et al. Toxicology Letters. 2020, 332: 88-96;Feng H., et al. Toxicology Letters. 2021, 340: 4-14;Li S. et al. Interdisciplinary Sciences: Computational Life Sciences. 2021, 13: 25-33.)致癌性预测服务器首页致癌性预测结果页相关综述对本服务器的介绍RF-hERG-Score预测药物引起的hERG相关心脏毒性2.药物设计方法:在计算机上对药物靶点和药物分子的结构和活性建模,计算药物与靶点之间的相互作用关系,从而设计出具有治疗作用的药物。计算机辅助药物设计可以为药物设计各阶段的实验方案提供有意义的指导,减少需要通过实验评估的候选药物的数量,从而加快新药研发速度。我们应用分子对接、分子动力学模拟、自由能计算、机器学习等方法研究流感病毒等重要疾病的计算机辅助药物设计、并开发更有效的计算机辅助药物设计方法。在计算机辅助药物设计研究我们主要完成了流感病毒M2质子通道蛋白抑制剂虚拟筛选方法研究,正在进行先导化合物生成模型研究、基于机器学习的虚拟筛选打分函数算法开发、SARS-CoV-2病毒S蛋白与受体相互作用及药物设计研究。特异性重打分函数显著虚拟筛选性能显著较高筛选出两个候选抑制剂3.药物靶点识别方法:长非编码RNA(lncRNA)是一种长度在200nt至100,000nt之间的非编码RNA,是转录物的主要成分。研究表明lncRNA在许多生物学和病理学过程中起着重要作用。lncRNA起作用的重要途径是与其靶蛋白结合。lncRNA-蛋白质相互作用的实验研究需要大量资源。累积的实验数据使得通过计算方法预测lncRNA-蛋白质相互作用成为可能。我们使用各种数学建模和机器学习方法开发了几种用于预测lncRNA-蛋白质相互作用的新模型。这些模型命名为:RWLPAP(随机游走),LPI-NRLMF(邻域正则化逻辑矩阵分解),IRWNRLPI(集成随机游走和邻域规则化Logistic矩阵分解),LPI-BNPRA(双向网络投影推荐算法),LPI-ETSLP(基于特征值变换的半监督链路预测),HLPI-Ensemble(集成学习)。在交叉验证中,我们的模型获得了较好的预测性能。lncRNA-蛋白质相互作用预测模型的性能比较lncRNA-蛋白质相互作用预测服务器相关软件著作权:
辽宁大学 2021-04-10
人工智能药物筛选、药物设计及毒性预测算法
本成果采用最新的深度学习和分子模拟算法,结合新一代分子特征化方法,开发了多种计算机模型,可用于药物开发中的多个阶段,为药物的快速设计开发提供一个完整的基于人工智能的解决方案。 成果:1.药物毒性预测方法:传统的化合物毒性检测技术一般需要使用生化试验、细胞实验、甚至动物模型,这些方法不仅耗费大量时间,而且成本很高。使用计算模型进行有机化合物的毒性预测,所需投入较少,但产出巨大。特别是基于化合物的物理化学和结构特性的计算模型,甚至能够在化合物合成之前就对其进行预测,大大提高了效率,使其越来越受到欢迎。在进行体外和体内试验之前先使用计算机模型对化合物进行大规模的毒性筛选,能够更好地解决候选药物具有毒性的问题。我们建立了一套新的基于多种分子指纹和机器学习算法的化合物毒性预测集成学习算法,运用此集成学习算法建立了新的有机化合物致癌性、致突变性和肝毒性预测模型。我们分别建立了名为CarcinoPred-EL (http://112.126.70.33/toxicity/CarcinoPred-EL/, 致癌性预测)、MutagenPred-EL (http://112.126.70.33/toxicity/MutagenPred-EL/, 致突变性预测)、LiverToxPred-EL (http://112.126.70.33/toxicity/LiverToxPred-EL/, 肝毒性预测)的预测服务器,这些服务器能够为使用者提供更高效更便捷的预测技术服务。自2017年服务器发表起,我们已为国内外药物分子设计研究者提供了5000多次共计超过20多万个化合物的毒性预测服务。在有机化合物毒性预测研究方向,我们主要完成了化合物的细胞毒性、心脏毒性、生殖毒性、血脑屏障透过性、水生生物毒性预测模型,以及糖尿病早期筛查模型的开发,正在进行P450酶阻滞剂性预测模型、基于图神经网络的毒性预测算法研究、基于分子对接的化合物毒性预测研究等。相关研究成果已发表多篇学术论文(Zhang L., et al. Scientific Reports, 2017, 7: 2118. WOS被引次数80,ESI 1%高被引论文;Ai H., et al. Toxicological Sciences, 2018, 165: 100-107;Yin Z., et al. Journal of Applied Toxicology. 2019, 39(10): 1366-1377;Ai H., et al. Ecotoxicology and Environmental Safety. 2019, 179: 71-78;Liu M., et al. Toxicology Letters. 2020, 332: 88-96;Feng H., et al. Toxicology Letters. 2021, 340: 4-14;Li S. et al. Interdisciplinary Sciences: Computational Life Sciences. 2021, 13: 25-33.) 致癌性预测服务器首页 致癌性预测结果页 相关综述对本服务器的介绍 RF-hERG-Score预测药物引起的hERG相关心脏毒性 2.药物设计方法:在计算机上对药物靶点和药物分子的结构和活性建模,计算药物与靶点之间的相互作用关系,从而设计出具有治疗作用的药物。计算机辅助药物设计可以为药物设计各阶段的实验方案提供有意义的指导,减少需要通过实验评估的候选药物的数量,从而加快新药研发速度。我们应用分子对接、分子动力学模拟、自由能计算、机器学习等方法研究流感病毒等重要疾病的计算机辅助药物设计、并开发更有效的计算机辅助药物设计方法。在计算机辅助药物设计研究我们主要完成了流感病毒M2质子通道蛋白抑制剂虚拟筛选方法研究,正在进行先导化合物生成模型研究、基于机器学习的虚拟筛选打分函数算法开发、SARS-CoV-2病毒S蛋白与受体相互作用及药物设计研究。 特异性重打分函数显著虚拟筛选性能显著较高 筛选出两个候选抑制剂 3.药物靶点识别方法:长非编码RNA(lncRNA)是一种长度在200nt至100,000nt之间的非编码RNA,是转录物的主要成分。研究表明lncRNA在许多生物学和病理学过程中起着重要作用。lncRNA起作用的重要途径是与其靶蛋白结合。lncRNA-蛋白质相互作用的实验研究需要大量资源。累积的实验数据使得通过计算方法预测lncRNA-蛋白质相互作用成为可能。我们使用各种数学建模和机器学习方法开发了几种用于预测lncRNA-蛋白质相互作用的新模型。这些模型命名为:RWLPAP(随机游走),LPI-NRLMF(邻域正则化逻辑矩阵分解),IRWNRLPI(集成随机游走和邻域规则化Logistic矩阵分解),LPI-BNPRA(双向网络投影推荐算法),LPI-ETSLP(基于特征值变换的半监督链路预测),HLPI-Ensemble(集成学习)。在交叉验证中,我们的模型获得了较好的预测性能。 lncRNA-蛋白质相互作用预测模型的性能比较 lncRNA-蛋白质相互作用预测服务器相关软件著作权:
辽宁大学 2021-05-10
大者希移动端小程序应用管理制作系统V1.0
大者希移动端小程序应用管理(制作)系统(简称:轻应用小程序)是集成官网展示、互动沟通、营销传播、运营管理于一体的小程序制作服务平台。无需代码开发、具备丰富的精美模板及功能控件,拖拽式操作,所见即所得通过应用小程序,可快速制作官网展示、门店预约等100+行业类型的微信、百度、抖音、头条、支付宝、快手小程序,从而实现基于小程序的营销推广和线上交易。 主要用途:多平台小程序设计/运营/应用;院校实训实践应用;  主要功能/规格: 1.部署方式:SaaS云服务部署;  2.多平台支持:微信小程序、百度小程序、抖音小程序、头条小程序、支付宝小程序、快手小程序多端发布展示;  3.设计中心:可视化模块/拖拽式操作;系统自带全行业模版素材,免费升级更新;支持自定义设计模块/素材/空间/页面/主体风格等个性化设置; 4.主要功能:客户管理(智能名片/商机雷达/会员系统)/服务预约系统/内容管理(订阅/文章/音频/视频/专栏/订单管理)/信息库/互动管理(表单系统/在线留言/查询系统/投票系统/闯关打卡/在线答题系统/自动报价等)/在线客服等; 5.同城/社区发布:同城信息展示/信息发布/留言管理/信息管理/信息审核等;  6.在线支付:到店支付/上门支付/微信支付/原路退款; 7.营销管理:新人有礼/优惠券/集CALL解锁/裂变分销等; 8.流量管理:微信流量支持微信月访客数、页面路径和二维码、附近的小程序、自定义微信分享、短信/邮件/公众号跳转、微信广告、微信搜索、关注公众号、跳转视频号直播间等;百度流量支持月访客数、页面路径和二维码、百度广告、百度搜索、信息流分发等; 9.安全与服务:云资源库空间:1TB ;员工权限设置/备份还原/操作日志;支持数据统计;支持7*24网络监控服务等;
希润数字技术(武汉)有限公司 2024-12-06
多功能牵引床电脑控制器
牵引床是治疗腰椎、颈椎疾病的主要设备,传统做法是依据病人病情通过改变铁块重量进行牵引治疗,因此医护人员劳动强度大、治疗模式简单。 多功能牵引床电脑控制器存储了常用的8种牵引模式,医护人员只需根据病人病情通过仪器面板上的按键选择治疗模式并输入相关参数值(步数、时间等),整个牵引过程便可在控制器管理下自动完成。
武汉工程大学 2021-04-11
循环流化床富氧燃烧技术
"该成果获2018年度高等学校科学研究优秀成果奖(科学技术)自然科学类二等奖。1、单颗粒流化床富氧燃烧实验,揭示了气氛对脱挥发分、挥发分燃烧、焦炭燃烧的影响机理。2、循环流化床O2/CO2 燃烧小试研究,揭示了CO2/H2O气氛对燃烧效率及S/N、重金属、PM2.5和痕量元素等污染物析出排放的影响规律。3、50kWt氧/温烟气循环中试试验,验证了系统经济性和安全性、实现了多种污染物的协同控制。4、面向高氧浓度的新型2.5MWt IBHX-CFB中试研究,验证新型分区受热面布置方式,解决高氧浓度实质瓶颈 。5、 2.0MWt面向零排放的循环流化床富氧燃烧中试研究。6、第二代循环流化床富氧燃烧—增压富氧燃烧,更高经济性。 "
东南大学 2021-04-10
连续铁碳微电解流化床设备
此连续铁碳微电解流化床设备的主要原理是将铁屑和碳粒等填充料,填装在主要包括一筒体的特定装置中,制成所谓的电解床。当污水通过时,铁成为阳极,碳成为阴极,产生各种微电化学反应,从而实现废水处理目的。
南京工业大学 2021-04-14
首页 上一页 1 2
  • ...
  • 15 16 17
  • ...
  • 163 164 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1