高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种电气化铁道接触网工频在线防冰融冰方法
一种电气化铁道接触网工频在线防冰融冰方法,其作法是:A、在电气化铁道牵引变电所的任一供电臂的首端和末端分别连接首端和未端动态无功补偿装置;在接触网上设置温度传感器,温度传感器与首端动态无功补偿装置和未端动态无功补偿装置的控制器相连;B、温度传感器监测接触网的温度,当检测出的温度低于0℃时,控制器控制首端、末端动态无功补偿装置由无功补偿工作状态进入防冰融冰工作状态。在接触线上产生特定的电流,进行防冰融冰。该方法能够在线路不停运、不影响供电的情况下,在线自动进行防冰融冰,使接触网在冻雨及冰雪等极端灾害天气情况下不结冰,确保列车运行的安全。
西南交通大学 2016-10-20
一种用于门洞形断面结构衬砌混凝土温控防裂设计计算方法
本发明公开了一种用于门洞形断面结构衬砌混凝土温控防裂设计计算方法,包括如下步骤:(1)确 定温控防裂目标;(2)计算允许最高温度;(3)拟定温控方案,计算混凝土内部最高温度,在计算最高 温度≤允许最高温度的前提下,设计温控防裂方案。本发明方法的计算公式简单,能合理反映围岩性能、 衬砌结构尺寸、混凝土强度、洞内空气温度、通水冷却及其水温、浇筑温度等的影响,可以迅速计算出 门洞形断面结构衬砌混凝土施工
武汉大学 2021-04-14
一种聚四氟乙烯防熔滴母粒及其制备方法
本发明涉及一种聚四氟乙烯防熔滴母粒及其制备方法。本发明提供了一种聚四氟乙烯防熔滴母粒,所述聚四氟乙烯防熔滴母粒以其重量计由80 97%的热塑性树脂和20 3%的粒径在1μm  120nm之间的聚四氟乙烯超细粉组成。本发明还提供了制备所述聚四氟乙烯防熔滴母粒的方法,其包括将粒径为1 20μm的聚四氟乙烯粉末进行辐照,并采用挤出机将辐照后的聚四氟乙烯粉末和干燥后的热塑性树脂进行熔融共混、造粒、干燥,从而制得本发明的聚四氟乙烯防熔滴母粒。本发明的防熔滴母粒用于通过纤维纺丝而制备防熔滴聚酯、聚酰胺热塑性纤维,具有分散性好、易纺丝等优点,克服了现有热塑性纤维及其阻燃纤维熔融滴落的问题,简单易行、应用前景广阔。
青岛大学 2021-04-13
一种基于图形识别的道路救援装备绞盘绳防过拉预警方法
本发明公开了一种基于图形识别的道路救援装备绞盘绳防过拉预警方法,包括如下步骤: 1、在绞盘绳槽外侧轮盘的圆周上均匀标记几何图形; 2、在道路救援装备绞盘绳槽外侧设置图形采集装置,所述图形采集装置的采集区域大于单个几何图形标记,在采集区域中设置大于单个几何图形标记的区域为感兴趣区域,使感兴趣区域最多只能包含一个几何图形标记; 3、对图形采集装置采集到的每一帧图像中的感兴趣区域识别其中包含的几何图形标记的类型; 4、连续识别采集到的图像,得到几何图形标记变化序列;根据几何图形标记变化序列,得到绞盘转轴旋转方向和旋转角度; 5、对绞盘转轴旋转方向和旋转角度进行计算,当绞盘绳圈数小于阈值时进行安全报警。
东南大学 2021-04-11
我国科学家在围着床期动物胚胎细胞谱系分离调控研究方面取得新进展
围产期胚胎的发育调控一直是发育生物学的“黑匣子”问题,近日,华中农业大学科研团队在《Autophagy》杂志上发表题为“ATG7-mediatedautophagyfacilitatesembryonicstemcellexitfromnaivepluripotencyandmarkscommitmenttodifferentiation”的研究论文,阐述了围着床期胚胎谱系分离中选择性自噬与细胞命运决定的调控机制。
科技部生物中心 2022-04-04
基于Raman光谱分析的非接触便携式人与动物血液鉴别仪研发
研发了基于拉曼分析和纳米增强拉曼技术的便携式非接触人与动物血液 鉴别仪。根据血液样本特征拉曼光谱,确定光谱检测波段和激发波长,对分光 核心元件、系统光路、光纤探头等进行针对性设计与优化,降低系统杂散光, 提高特征拉曼光谱分辨力、信噪比和检测灵敏度;针对甄别对象特征,研究 血液样本专用拉曼增强纳米材料,进一步提高检测灵敏度;研制出便携式非接 触血液鉴别仪样机;针对不同种属血液的拉曼光谱,结合研发的仪器,开展分 析测试方法学研究,建立血液拉曼检测新体系和新方法。研制具有自主知识 产权的基于Raman光谱分析的非接触便携式人与动物血液鉴别仪工程化样机, 实现对人及常见动物血液样本的甄别,服务于我国进出口检验检疫部门,达到 2分钟内检测一个样品,识别率高于95%的测试要求。
重庆大学 2021-04-11
利用秸秆和废弃动物蛋白制造木霉固体菌种及木霉全元生物有机肥
本成果发明了以秸秆和废弃动物蛋白酸解氨基酸为原料,物料和空间均无需严格灭菌下大规模制造木霉固体菌种的技术工艺,突破了木霉全元生物有机肥制造技术瓶颈。 一、项目分类 显著效益成果转化 二、成果简介 木霉生物量大、根表定殖能力强、次生代谢产物种类多和含量高,促生和生防效果比细菌更显著,但木霉在液体扩繁后期不能有效产孢,需再进行固体发酵才能获得高浓度木霉固体菌种,传统工艺原料贵、物料严格灭菌成本高,难以扩大规模,这是木霉生物有机肥产业中的技术瓶颈。本成果发明了以秸秆和废弃动物蛋白酸解氨基酸为原料,物料和空间均无需严格灭菌下大规模制造木霉固体菌种的技术工艺,突破了木霉全元生物有机肥制造技术瓶颈。
南京农业大学 2022-07-25
沈建忠院士团队在动物源细菌耐药性变迁和演化方向取得研究进展
细菌中质粒的携带数量以及多样性随时间显著增加,而多种质粒在基因组中与耐药基因存在显著相关性,是介导重要耐药基因传播频率增加的主要载体,表明质粒多样性是加速重要耐药基因传播频率增高的重要原因。
中国农业大学 2022-05-31
基于光纤电法综合测试技术监测岩石变形与破坏
项目成果/简介:煤层采动过程中围岩变形破坏发育规律及特征技术参数对巷道支护、保护煤柱合理留设及水害防治等具有重要意义。本方法基于光纤电法综合测试技术与钻孔结合进行煤层开采围岩破坏特征观测。通过在井下巷道或地面施工并形成不同方位单孔、多孔等观测系统,并在孔中布置分布式传感光缆和电阻率传感单元等形成一套综合测试监测系统,利用相关测试仪器采集与传输应变场、温度场及直流电场等数据,通过分析实时得到的工作面顶、底板监测区域中岩体的应变场、温度场及地电场综合地球物理场参数变化情况,评价探测目标区域采动过程中岩体变形、破坏规律及其破坏高(深)度值。同传统的钻探方法及单一地球物理场勘探相比,综合测试可查明探测剖面内岩层的结构形态,通过多次对比时空演化规律,可获取岩层在采动过程中变形破坏发育规律及特征。
安徽理工大学 2021-04-11
生物炭暨秸秆炭化综合利用技术研究与应用
针对秸秆直接还田难、综合利用率低、焚烧污染严重,土壤碳库匮缺、耕地质量提升乏力等“老、大、难”问题,沈阳农业大学率先提出了“秸秆炭化还田”新理论,确立了“以生物炭为核心,以炭化技术为基础,以生物炭基肥料和生物炭基土壤改良剂为主要发展方向,兼顾能源化利用”的技术路线。2005年以来,围绕“生物炭暨秸秆炭化综合利用技术研究与应用”,项目组先后突破了生物炭规模化制备与农业应用关键技术,构建了全产业链技术体系,推动了成果高效转化,为秸秆间接还田开辟了一条新途径。    1. 研发出“半封闭式亚高温缺氧干馏炭化工艺”和“组合式多联产生物质快速炭化设备”,突破了秸秆“低成本、大批量制炭”的产业技术瓶颈。该工艺设备对原料适应能力强、生物炭生产效率高、能耗低,有效解决了农作物秸秆密度低、含水量高、预处理能耗大、炭化效率低等问题。所制备的生物炭含碳量高、孔隙丰富,可广泛用于土壤碳封存、农田温室气体减排、化肥减量增效、耕地质量提升等领域。    2. 开发出生物炭基肥料等系列生物炭基农业投入品,集化肥减量、土壤改良、节本增效等功能于一身,寓土壤改良与土壤利用之中,突破了生物炭规模化田间应用技术瓶颈。综合运用作物学、土壤学、植物营养学、微生物学、生物信息学等方法,系统揭示了生物炭固碳、改土、保肥、持效、促生作用规律与机制。在此基础上,遵循养分归还学说和农田生态系统物质循环规律,发明了以生物炭为载体生产专用肥料、土壤改良剂、水稻育苗基质的技术与方法,开发出以生物炭基肥料为代表的系列生物炭基农业投入品,能够在不增加农民生产成本的情况下实现秸秆间接还田,解决了生物炭直接还田成本高、推广难、市场化程度低等问题,打通了生物炭规模化田间应用“最后一公里”,改变了化学类缓控释肥料只减肥、改土作用不明显、只在当季起作用的局面。    3. 开展了大规模试验示范,构建了“分散制炭、集炭异地深加工”产业模式,实现了成果转化。针对集中处置利用与秸秆等农林废弃物分布广、收储运困难之间的矛盾,构建了“分散制炭、集炭异地深加工”产业模式,将产业链中的运输成本降低约 70%;制定了《生物炭基肥料》农业行业标准并首次发布,突破了制约生物炭技术产业化和行业健康发展的“瓶颈”问题。    截至 2016 年底,项目技术累计推广 1090.2 万余亩,辐射全国 20 余个省(市、自治区)。其中,2014-2016 年,项目技术推广应用 575 万亩,新增销售额 19665.6万元,新增利润 2359.9 万元,节支增收 42890.9 万元。合计新增经济效益 45250.8万元。
沈阳农业大学 2021-05-04
首页 上一页 1 2
  • ...
  • 96 97 98
  • ...
  • 119 120 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1