高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
固废热解气化
高校科技成果尽在科转云
西安交通大学 2021-04-10
耦合熔融结晶制备高纯联苯的方法
本发明涉及一种从煤焦油回收洗油减压精馏后的富集联苯馏分制备高纯度联苯的方法。包括以下步骤:1)将液态联苯馏分加入悬浮熔融结晶器内,按照(0.5~6)℃/h降温,终温为(20-40)℃。2)过滤:液相进入减压精馏塔进行分离,固相作为3)步骤原料。3)将2)步骤得到的固相熔化后,加入层式熔融结晶器内,按照(1-4)℃/h降温,降温至(60-64)℃,恒温0.5h,母液返回步骤1)作为原料;对晶体进行发汗,升温速率为(2-6)℃/h,升温至(68-69)℃,恒温0.5h,排出母液返回步骤3)作原料;对晶体全部熔化后作为产品。本发明的方法具有产品纯度高、成本低、收率高、环境友好等优点。
天津科技大学 2021-04-13
粉煤空气化制备燃气新技术
华东理工大学与浙江联顺筑养实业集团有限公司共同承担的国家863计划项目课题“粉煤 空气气化制备燃气新技术开发”,依托浙江联顺筑养实业集团有限公司,开发具有完全自主知 识产权的日处理75吨煤级、低成本和全热回收粉煤空气气化制备燃气新技术。该技术具有煤种 适应性强、流程简单和开停车操作方便等特点和优势,该技术主要特点包括: (1) 气化装置开停车时间短,操作简单,安全性高; (2) 碳转化率高,燃气中飞灰含量低; (3) 连续、稳定、准确和可控的高含水量中等固气比粉煤输送。 171资源与环境工程学院科技成果 172 (4) 采用空气气化,省去了昂贵的氧气制备系统。 (5) 气化工艺洁净,环境友好。 建成日处理煤量75 吨粉煤空气气化示范装置,以神府煤为原料基准,采用富氧空气,气 化压力常压,气化装置实现8小时连续运行,达到的主要技术指标为: (1) 空气煤比≤3100Nm3 空气/1000 kg煤; (2) 有效气成分CO+H2+CH4≥38%; (3) 碳转化率≥94~96%; (4) 燃气高热值≥5000 kJ/Nm3;
华东理工大学 2021-04-11
单喷嘴粉煤加压气化技术
煤炭气化,即在一定温度、压力下利用气化剂与煤炭反应生成洁净合成气(以CO、H2的混合物为主),是实现煤炭洁净利用的关键技术,可为煤基化学品(合成氨、甲醇、烯烃等)、整体煤气化联合循环发电(IGCC)、煤基多联产、直接还原炼铁等系统提供龙头技术,为现代能源化工、煤化工、冶金等行业的技术改造和节能降耗提供技术支撑。 单喷嘴粉煤加压气化技术属高效、节能、环保的气流床气化技术。干煤粉经位于气化炉顶部的喷嘴弥散后进入气化炉内(气化炉可采用耐火砖衬里,也可采用水冷壁衬里),与氧气反应生成以含CO、H2和CO2等气体为主的合成气。从气化炉出来的粗合成气经新型洗涤冷却室、混合器、旋风分离器和水洗塔等设备的洗涤和冷却后进入后序工段;气体洗涤设备内的黑水则经高温热水塔进行热量回收和除渣后成为灰水再返回气体洗涤设备内,全气化系统实现零排放。 该技术煤种适应性广,如果采用水冷壁衬里,则可气化灰熔点超过1500℃煤种,具有广阔的应用前景。 该技术工艺指标先进,以耐火砖衬里气化炉、北宿精煤进料为例,其合成气中(CO+H2)含量约90%,碳转化率不低于98%,与水煤浆进料相比,比氧耗降低16%~21%、比煤耗2%~4%。该技术生产强度大,专利实施许可费低。
华东理工大学 2021-02-01
热管式生物质气化炉
热管式生物质气化炉是将高温热管技术引入生物质气化炉中,实现生物质的间接气化,使得生成的燃气中不含氮气,热值可达15MJ/Nm3。试验结果表明与用空气直接供热气化的气化炉气体组分和热值比较,用热管式生物质气化炉间接供热得到的气体组分中H2的含量很高,约是用空气直接供热气化的10倍,热值是用空气直接供热气化的2~3倍。用所开发的热管式生物质气化炉建立小规模分布式热电联产系统,合理利用生物质能,解决我国分散地区的热、电供应问题。已申请了两项发明专利,目前均已授权。旋转热管生物反应器是采用回路热管的技术原理,依靠热管吸热段上的热管浆叶来实现吸热。热管浆叶和热管搅拌轴是相通的,两者组合的旋转热管本身是一个等温体,当热管浆叶围绕搅拌轴旋转时,在釜内形成圆筒形的液体等温层,并通过布置多层热管浆叶,就可实现整个釜内的温度均匀性。优点是吸热桨叶单元占用空间小,强化管外反应器内介质的传热传质,提高反应器内传热效率和生物反应效率,同时实现节能减排目的。已申请了一项发明专利,目前已授权。
南京工业大学 2021-04-13
生活垃圾热解气化处置
在中国北方地区,由于缺水原因,火电机组的发展受到了很大的限制,许多新建电厂由于用水指标紧缺,往往不得不采用投资大、运行成本高、脱硫效率较低的干法脱硫系统。一台600MW机组干法脱硫系统初投资就达7-8亿元,而脱硫效率很高的湿法脱硫系统只需1.2-1.5亿元。所以,研究大幅度减少湿法脱硫系统耗水,非常必要,具有巨大的应用背景。 烟气通过脱硫塔一般为饱和状态,将带走大量水分。对于湿法脱硫系统,由饱和烟气带到大气中的水量占整个系统耗水量的90%以上。降低脱硫后的烟气温度,饱和湿烟气将发生冷凝,可以回收大量水分,大幅度减少系统耗水,甚至实现湿法脱硫零补水。但由于脱硫塔出口烟温一般为50℃左右,存在低温腐蚀问题,同时对冷凝换热器结构及传热系数,凝结水回收效率,低品位热量回收利用方式等问题还缺少系统的研究,因此目前国内外还没有在大型燃煤机组上成熟运用此项技术的先例。西安交通大学能动学院在近几年的课题中,探索了从燃煤电厂烟气中回收水分的可能性,并取得了详细的试验数据,可为本课题的工业示范应用提供支持。 本课题将通过实验研究脱硫塔出口烟气水分及热量回收过程的影响因素及规律,并对工业实施方案中的具体问题进行分析,为湿法脱硫系统节水工程提供理论与实验基础。
西安交通大学 2021-04-11
无催化剂熔融缩聚合成聚酯
研究团队发展并突破了Carothers建立的聚酯合成理论,提出了一种无催化剂缩聚的新机理,采用了一类能够形成五元环或者六元环酸酐的二元羧酸作为单体。 一、项目分类 关键核心技术突破 二、技术分析 聚酯是仅次于聚烯烃的第二大类人工合成高分子材料,被广泛应用于纤维、瓶材、薄膜等领域,与人们的生产生活密切相关。大多数商品化聚酯都是采用二元羧酸和二元醇在金属化合物的催化下通过熔融缩聚合成的。锑系催化剂是目前综合性能最好,应用最为广泛的催化剂,残留在聚酯中的金属锑对人类健康和环境有潜在危害,亟待开发新型绿色聚酯合成新方法,消除聚酯中残留催化剂的危害。 聚酯的工业生产一般分为两步反应:(1)二元羧酸和二元醇通过酯化反应合成低分子量羟基封端齐聚物;(2)酯交换反应脱除二元醇获得高分子量聚酯。其中第一步酯化反应不需要外加催化剂,通过二元羧酸单体自身的羧基自催化即可进行,而所谓的聚酯催化剂实质上是第二步反应的酯交换催化剂。只通过第一步酯化反应就有效提升聚酯分子量,避免第二步酯交换反应的进行,是无催化剂熔融缩聚合成高分子量聚酯唯一有效途径。早在高分子学科创立之初的上世纪20年代末,Carothers就研究了二元羧酸与二元醇可在羧酸单体自催化下熔融酯化缩聚,以期得到聚酯材料,然而产物分子量仅有2-5 kDa,性能太差而无法应用。酯化反应的低平衡常数和高熔体黏度下排除副产物水的困难,被普遍认为是导致自催化方法无法获得高分子量聚酯的原因。1941年,英国化学家Whinfield和Dickson受Carothers研究的启发创造性地提出了酯交换策略,通过酯交换反应脱除过量的二元醇合成了分子量高、力学性能优异的聚对苯二甲酸乙二醇酯(PET),并由英国ICI公司在1946年实现工业化生产。目前几乎所有的商品化聚酯都是通过酯交换路线合成的,但是为了克服酯交换反应的能垒,催化剂的使用不可避免。Flory在1953年出版的《Princeples in Polymer Chemistry》上对此做了总结,认为自催化酯化缩聚合成高分子量聚酯是不可能实现的。 研究团队通过对自催化酯化缩聚机理的深入研究,得出自催化方法无法获得高分子量聚酯的原因仅仅在于反应过程中的官能团比例失衡,而非酯化反应的低平衡常数及副产物难以排出。研究团队发展并突破了Carothers建立的聚酯合成理论,提出了一种无催化剂缩聚的新机理,采用了一类能够形成五元环或者六元环酸酐的二元羧酸作为单体。过量的此类二元酸与伯二元醇酯化形成羧基封端的预聚物后,通过三步串联的基元反应:质子转移、酸酐形成和再次酯化反应,使得体系中的醇酸官能团比例不断趋近于等摩尔比,从而在不需要外加催化剂的条件下获得了高分子量的聚酯。该方法中聚酯产物分子量增长呈现出独特的“加速”模式,从而在与传统工艺相近的时间内,通过熔融缩聚获得了一系列的高分子量无催化剂聚酯,包括聚丁二酸丁二醇酯(PBS)、聚丁二酸乙二醇酯(PES)、聚(丁二酸丁二醇酯-共-己二酸丁二醇酯)(PBSA)和聚(丁二酸乙二醇酯-共-对苯二甲酸乙二醇酯)(PEST)等。研究团队通过进一步深入研究聚合机理,优化聚合工艺,解决了无催化剂熔融缩聚合成聚酯的单体普适性问题,实现了PET、聚呋喃二甲酸乙二醇酯(PEF)等芳香族聚酯的无催化剂合成。 本成果解决了聚酯工业的百年难题,属于国际首创,并拥有完全的知识产权,具有巨大的应用潜力。
浙江大学 2022-07-22
造气炉气化层温度实时测量系统
1.项目简介:应用间接测温与计算机系统特性辩识为一体的智能实时测温方法,即依据间接测温信号与校正测试温度信号,对系统的动态教学模型进行分辨识和参数估计,并由辨得到的对象特性对气化层温度运行最可信估计的测温方法,实现间歇式固定层煤气发生炉(简称造气炉)气化层温度实时准确测量。 2.技术特点;该工业测温精度高,可靠性强,检测装置能长期安全运行,对造气炉内温度场分布、工艺运行不产生影响;为造气炉正常安全运行,节能降耗和实现造气工艺闭环自动控制提供了先决条件。
武汉工程大学 2021-04-11
多喷嘴对置式水煤浆气化技术
煤炭气化,即在一定温度、压力下利用气化剂与煤炭反应生成洁净合成气(CO、H2的混合物),是实现煤炭洁净利用的关键,可为煤基化学品(合成氨、甲醇、烯烃等)、整体煤气化联合循环发电(IGCC)、煤基多联产、直接还原炼铁等系统提供龙头技术,为现代能源化工、冶金等行业的技术改造和节能降耗提供技术支撑。 多喷嘴对置式水煤浆气化技术是世界上最先进的气流床气化技术之一。水煤浆经四个对置的喷嘴雾化后进入气化炉内,与氧气反应生成含CO、H2和CO2的合成气,从气化炉出来的粗合成气经新型洗涤冷却室、混合器、旋风分离器和水洗塔等设备的洗涤和冷却后进入后序工段;气体洗涤设备内的黑水则经高温热水塔进行热量回收和除渣后成为灰水再返回气体洗涤设备内,全气化系统基本实现零排放。 该技术工艺指标先进,与同类技术相比,合成气有效成分高2~3个百分点、碳转化率高2~3个百分点、比氧耗降低7.9%、比煤耗降低2.2%等,生产强度大,又减少了专利实施许可费。
华东理工大学 2021-02-01
生物质气化制取富氢燃气系统
项目简介 本成果针对农村废弃生物质资源丰富,以及秸秆禁烧国家政策的实际情况,采用感 应加热原理开发生物质气化技术,采用该技术研发的生物质气化系统具有加热均匀,节 能环保,运行连续,结构简单等优点,可利用秸秆、稻壳、锯末等生物质原料制取富氢 燃气。 性能指标 系统能耗: <10kW; 覆盖面积:100m2 ; 富氢燃气热值:>9MJ/m3 适用范围、市场前景 适用范围:适用于新能源企业开发新型节能项目,解决农场、农村秸秆或其他生物 质废弃资源处理问
江苏大学 2021-04-14
首页 上一页 1 2 3 4 5 6 7 8 下一页 尾页
热搜推荐:
1
云上高博会企业会员招募
2
63届高博会于5月23日在长春举办
3
征集科技创新成果
中国高等教育学会版权所有
北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1