高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
纳米催化二氧化钛的研制
高比表面积二氧化钛主要用于催化剂载体材料。针对脱硝催化剂用纳米二氧化钛,比表面积大,催化活性高,化学性质稳定,使用寿命长,主要应用在处理氮氧化物,电厂、汽车尾气等催化剂领域。同时纳米二氧化钛具有光催化活性,对治理雾霾有非常重要的作用。该技术的特点是比表面积可控、催化活性高、使用寿命长。开发了纳米二氧化钛的研制方法。采用硫酸法水解得到的偏钛酸,通过加入控制剂、同时控制浓度、温度、pH 等工艺参数,可以制备比表面积从 10~350m2/g,颗粒大小尺度可控的纳米二氧化钛。
清华大学 2021-04-11
活性炭载氧化铁催化剂
该催化剂属专利技术,适用于在20~25℃条件下处理含酚废水和焦化废水。 含酚废水是一种对人类危害十分严重而又普遍存在的工业废水,酚类化合物,可使蛋白质凝固,对人类、水产生物及农作物都有极大危害。钢铁工业、煤气化工业中的炼焦工艺是以煤为原料,在隔绝空气条件下将煤加热到960~1000℃,得到焦碳和一些化工产品,同时,在生产过程中产生大量难以生物降解的芳香族有机化合物、杂环及多环化合物,且酚含量较高,处理比较困难,这些污染物如果未经处理或处理不当随废水排放,将对水体产生严重污染。寻找高效、经济、环境友好的处理方法一直是含酚废水处理领域的研究热点。 含酚废水处理目前常用的方法有:生化法、Feton试剂氧化法、催化湿式氧化法等。华中科技大学环境科学与工程学院提到(华中科技大学学报22(2005,4)79~81)生化法对焦化废水进行处理,处理后水的酚、氰含量基本达标,但生化处理后的废水色度仍然很高,含有大量难降解有机物,其COD不能达到国家排放标准,在不改变主体生化法工艺的情况下,还需要对生化系统的外排水进行深度处理。Fenton试剂是Fe2+和H2O2的组合(Chem. Soc.65(1894)899~9lo),在酸性(2.5~4.0)条件下Fe2+能有效地催化H2O2产生OH—,OH— 具有极强的氧化能力,它可将有机污染物在短时间内氧化降解。由于Fe2+是溶解在溶液中的,Fe2+难与反应介质分离回收,易流失和引起二次污染。催化湿式氧化法是八十年代国际上发展起来的一种处理高浓度难生物降解有机废水的处理技术(U S 4699720,1987)。它是在反应釜中,在催化剂作用下,于高温高压条件下用氧气或空气直接将污水中的有机物氧化成CO2、H2O等无害物,以达到净化的目的。至今有多种过渡金属氧化物被认为对湿式氧化有催化活性,大连化学物理研究所的杜鸿章、房廉清等人在(水处理技术23(1997,2)83-87)提到的贵金属系列催化剂的活性高、寿命长,是催化湿式氧化法较有效的催化剂,但由于该方法所用的催化剂价格昂贵,污水处理所用的设备成本高,使其应用受到极大限制。 技术内容: 主要解决的技术问题是:提出一种价格低廉,可回收的,在20~25℃条件下处理含酚污水简便易行的催化剂。 活性炭载氧化铁催化剂,其组分和含量为: 氧化铁重量百分比含量为1.0~10.0%,活性炭重量百分比含量为90.0~99.0%。 活性炭载氧化铁催化剂处理含酚废水的方法: 取含酚废水或焦化废水100mL放入250mL锥型瓶中,加入制备好的氧化铁重量百分比含量为1.0%的活性炭载氧化铁催化剂1.5g,调节溶液pH=5.0,于20-25℃搅拌20~30min,过滤,滤液即为处理过的含酚废水。用氧化铁重量百分比含量为2.0%或5.0%的活性炭载氧化铁催化剂处理含酚废水,具有与氧化铁重量百分比含量为1.0%的活性炭载氧化铁催化剂同样的效果。 与现有技术相比所具有的优点: 活性炭载氧化铁催化剂制备方法简便易行,价格低廉,可回收,在20~25℃条件下处理含酚污水简便易行。活性炭载氧化铁催化剂的制备是以三氯化铁(FeCl3)和活性炭为原料,将铁氧化物载到活性炭上,催化剂制备方法简便、价格低廉、稳定性好、易于回收、催化活性高。用该催化剂处理含酚废水,可在pH=5.0的弱酸性条件下,在20~25℃的室温条件下直接进行,不需要加热,大大地节约了能源,活性炭载氧化铁催化剂可直接处理污水,不需要加H2O2或通O2,易于操作,反应条件温和,处理成本低廉,COD能达到国家排放标准(<150mg/L),COD去除率高,可达到94%以上。
北京交通大学 2021-04-13
撬装式无泥芬顿催化氧化设备
成果介绍2019年开始,中央环保督察组将用三年时间,完成全国第二轮督察,环保做为供给侧改革重要抓手,洗牌行业格局,释放废水总量治理需求的存量空间,订单数量和单价相应提升。针对 “重化围江”现状和化工园区的快速发展导致“三废”排放量居高不下的窘境,东南大学纳米低维净化材料创新团队以毒性减排为目标,重点攻关国家重大需求污染全过程除毒处理,研制的撬装式无泥芬顿催化氧化设备,框架结构集成化、灵活机动、随开随用、全地形使用,非接触式全封闭深度处理、避免交叉污染与扩散污染。适用于三高一低难降解水质的处理,也可适用于工业园区、医药、石油化工、煤化工等废水处理。主要消减指标:对COD,色度有良好去除效果,去除率65-95[[%]],B/C比提升到0.4以上,无二次污染,污泥零排放。工业水处理价值链包括建设阶段的系统设计,设备集成,工程施工,以及运营阶段的药剂生产,解决方案,运营管理。我们可以提供系统设计,设备集成,药剂生产,解决方案,等多层次优质服务。技术创新点及参数1.首创NSFO技术,NSFO技术耦合真空紫外光VUV的装备化优势,在大幅提升处理效果的基础上避免了污泥二次污染的产生。2.精准治理:根据污染物组成、理化性质,定制催化剂与降解工艺;源头处理,分质分流。3.环境友好:NSFO 产品日常运行基本无外排污泥,不产生异味、不影响周边环境,可临近居民区建设,基本消除“邻避效应”。4.易选址:框架结构集成化,催化剂高效化,流程精简化;整套设备高度集成于移动框架外壳中,可全地形部署,随开随用。5.智能化程度高、管理简单:NSFO 产品控制系统智能化,通过自动控制系统使工况数据自动上传,无需专人值守。6.成本优势:投资省,占地省,人力省,出水总量省,自动化程度高,比传统传统芬顿法氧化工艺总成本减少30[[%]]以上市场前景1.入围2019年南京创新周签约项目2.入围扬子江生态展陈,共建扬子江生态文明
东南大学 2021-04-13
催化苯乙烯环氧化制备环氧苯乙烷的新型催化剂
环氧苯乙烷作为一种重要的化工中间体被广泛应用于化工与医 药生产等众多领域,传统的制备方法——卤醇法在生产过程中环境污 染严重、对原料的利用率不高,导致生产成本居高不下。随着整个社 会环保意识的不断增强,绿色化学日益受到重视。在催化苯乙烯环氧 化反应的研究过程中,开发高效、低污染、低能耗、环境友好的催化 剂一直是研究的主要方向。虽然在许多研究人员的不懈努力下,催化 剂的研究取得了可喜的进展,但是现有的催化剂还存在着一些缺陷, 新型高效催化剂的研发仍然是当前研究的热点之一。我们发现将普鲁 士蓝类配合物用
兰州大学 2021-04-14
非钳燃料电池催化剂的设计与制备
汽车行业发展迅猛,能源需求巨大,机动车尾气的排放造成的环境污染日趋 严重。氢-氧质子交换膜动力燃料电池(PEMFC)以其高效、洁净、兼容可再生能 源技术等特点,被认为是后石油时代解决移动高性能动力电池的理想方案。然而, 当前PEMFC所使用的催化剂为贵金属Pt基催化剂,其对Pt资源的需求巨大,成 本高昂,难以成功商业化推广。因此,开发出符合动力输出性能的非钳燃料电池 技术,契合我国对高效节能、环境友好的高性能动力电池汽车的迫切需求。 以该项目为依托制备的非贵金属燃料电池催化剂以可以使单电池的最大输出 功率达到0. 6 W. cm-2,已经完全达到贵金属Pt基燃料电池的输出性能,可以满 足动力输入应用要求。目前,该催化剂形成完全自主知识产权的技术,属于国际 一流国内领军的高科技技术。该催化剂的成功推广势必将从根本上解决机动汽车 尾气对我国环境的污染问题,降低对石化能源的需求。市场及经济效益分析: 全球范围内,燃料电池行业发展迅猛,行业总体步入正轨。2010年,燃料 电池堆的全球出货量有23万台,而在2007年只有1. 1万台出货量,2011年至 2012年的全球燃料电池的出货量有85%的年增长速度。在2010年全球售出的燃 料电池中,便携式燃料电池占到这一总数的95%,其中超过97%采用质子交换 膜燃料电池技术。2007年至2010年间,燃料电池出货量翻了 20倍。从应用上 看便携式小幅增长,交通运输应用在近几年大幅增长,而在电站的应用则呈现平 稳增长态势。2012年,燃料电池行业的收入超过10亿美元的全世界市值,并且 亚太国家运送超过3/4的燃料电池系统到世界各地。2014年起,按每年22. 6% 的复合年增长率计算,全球燃料电池产能在2020年预计将达到664.5兆瓦。在 未来六年时间里,各国政府对加氢站及相关氢基础设施的投入将成为这一增长的 推动力量。随着燃料电池技术在全世界范围内的广泛应用,作为其关键材料的催 化剂必将具有广阔的市场应用前景和丰厚的利润。 另外,制备该催化剂的原产料价格便宜、方法和工艺非常简单, 且生产过程中不会对环境造成污染,很容易开展下一步工业生产。
重庆大学 2021-04-11
甲酸电氧化技术
近日,清华大学化学系王定胜教授、李亚栋院士领导的课题组在甲酸电氧化领域取得突破,相关工作以“负载在氮掺杂碳上的单原子Rh:一种甲酸氧化的电催化剂”(Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation)为题在《自然·纳米技术》(Nature Nanotechnology)发表。燃料电池是一种理想的能量来源,它可以以环境友好的方式将化学能转换为电能。氢氧燃料电池作为航空飞船的主要燃料,在上世纪80年代就已经得到了发展,近年来氢氧燃料电池在汽车上的应用也有了突飞猛进的提高。然而氢氧燃料电池需要用体积大且危险的高压氢气作为其燃料,这限制了氢氧燃料电池的发展。而直接甲酸燃料电池(DFAFCs)由于其体积小,毒性小,nafion@膜的穿透率低等优点,被认为是未来便携式电子设备最有前途的电源之一。在之前的研究中,负载型纳米级钯和铂通常被认为是DFAFCs的阳极反应甲酸电氧化(FOR)中最有效的催化剂,并得到了深入的研究。然而,由于FOR催化剂质量活性较低和一氧化碳抗毒性较差, DFAFCs阳极材料的发展达到了一个瓶颈,极大地阻碍了其应用。SA-Rh/CN的合成路径示意图及其表征在本工作中,研究人员使用主-客体合成策略成功地合成负载原子分散Rh的氮掺杂碳催化剂(SA-Rh/CN),发现尽管Rh纳米颗粒对甲酸氧化活性很低,但是SA-Rh/CN却具有极好的电催化性能。与最先进的催化剂Pd/C和Pt/C相比,SA-Rh/CN的质量活性分别提高了28倍和67倍。有趣的是,在CO剥离实验中,我们发现虽然纳米级Rh催化剂对CO毒性十分敏感,但是SA-Rh/CN很难吸附CO并且可以在很低的电压下氧化CO,这说明SA-Rh/CN对CO毒化几乎免疫。经过长期反应的测试后,SA-Rh/CN中的Rh原子具有抗烧结的能力,并因此在30000s的CA测试或者20000圈ADT测试后活性几乎没有改变。在组装电池的实验中,SA-Rh/CN的质量比能量密度在不同温度下分别是商业钯碳催化剂的8.8倍(30oC),14.8倍(60oC)和14.1倍(80oC),这也说明了SA-Rh/CN在DFAFCs的应用中具有很高的潜力。最后,研究者用密度泛函理论(DFT)计算了Rh单原子甲酸氧化的机理。研究者发现在SA-Rh/CN上,甲酸根路线更为有利。和Rh纳米颗粒具有较低的CO吸附能垒不一样,SA-Rh/CN上的Rh单原子吸附CO能垒较高,以及与CO的相对不利的结合,使SA-Rh/CN具有极高的CO抗毒性。这一发现将传统的甲酸电氧化催化剂的质量比活性提高了一个数量级,并且很好地解决了传统纳米催化剂的CO毒化问题。该发现有助于在燃料电池领域取得突破,并有望应用于便携式电子设备上。本论文的通讯作者是王定胜教授、李亚栋院士,清华大学博士后熊禹是本文的第一作者。本研究受到国家自然科学基金委和科技部的经费资助。论文链接:https://www.nature.com/articles/s41565-020-0665-x
清华大学 2021-04-11
微弧氧化技术
微弧氧化(Micro-arc oxidation,MAO)技术是通过电解液与相应电参数的组合,在铝、镁、钛及其合金表面依靠弧光放电产生的瞬时高温高压作用,原位生长出以基体金属氧化物为主的陶瓷膜层。 微弧氧化工艺克服了硬质阳极氧化的缺陷,极大地提高了膜层的综合性能。微弧氧化膜层与基体结合牢固,结构致密,韧性高,具有良好的耐磨、耐腐蚀、耐高温冲击和电绝缘等特性。该技术具有操作简单和易于实现膜层功能调节的特点,而且工艺不复杂,无废水废气排放,不造成环境污染,是一项全新的绿色环保型材料表面处
常州大学 2021-04-14
用于一氧化氮氧化的莫来石型复合氧化物催化剂
本发明公开了一种用于一氧化氮氧化的催化剂,其特征在于, 所述催化剂为莫来石型复合氧化物,化学通式为 A1-xA'xB2-yB'yO5, 其中,A 和 A'各自独立地为稀土金属或碱土金属元素中的一种,B 和 B'各自独立地为过渡族金属元素中的一种,且 0≤x≤1,0≤y≤2。该 催化剂可以在较宽的温度范围内高效地将一氧化氮催化氧化为二氧化 氮,且成本低,具有很好的热稳定性,能长时间保持较高的催化活性, 明显提高汽车尾气
华中科技大学 2021-04-14
基于催化臭氧化的废水深度处理及回用关键技术及设备
近年来,全球范围内对环境保护高度重视,对于经过物理、生化之后的废水深度处理,可以实现回用或者零排放,推动经济社会可持续发展。难点在于,残留的污染物浓度很低、成分复杂,且不能引入二次污染。催化臭氧化可以实现高氧化性物种羟基自由基的产生,将污染物成分高效去除,是经济实用的可行方法之一。在多年从事废水处理的基础上,建立了基于催化臭氧化的废水深度处理和回用工艺、装备,荣获中国商业联合会科技进步一等奖。 
江南大学 2021-04-13
非硅MEMS 技术及其应用
 1988年国际上提出的MEMS(MicroElectroMechanical System)技术是将IC工艺和机电设计相结合制造微传感器、微执行器和微系统的新技术,也称硅MEMS。作为对硅MEMS的补充和发展,非硅材料种类繁多、性能各异,能满足不同应用领域的需求,我们在国家863 计划等项目支持下于九十年代初首先提出并创立了非硅MEMS技术。 提出非硅MEMS新概念和总体思路;开发了以金属基为主的多种材料兼容的非硅表面微加工、高深宽比三维微加工等成套非硅微加工技术,为非硅MEMS发展奠定了良好基础;把经典原理和非硅微加工结合,开发了一系列压电、静电、磁电、微流体、惯性等种类的微器件和微系统,形成若干具有完全知识产权的专利群;并将非硅MEMS应用于生物芯片、微引信、信息、光器件、复合膜模具、国防武器、非硅MEMS生产线等众多领域,取得了显著的经济、社会效益,推动和引领了我国非硅MEMS技术的应用和发展。  非硅MEMS技术及其应用获得国家技术发明二等奖2项(2008,2000),省部一等奖4项,获2009年中国工业博览会创新奖;授权发明专利200多项;出版MEMS专著6部。
上海交通大学 2021-04-13
首页 上一页 1 2 3 4 5 6
  • ...
  • 771 772 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1