高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
党参口服液
以甘肃优质党参为原料,以获得国家专利证书的党参保健饮料为配方基础,进一步通过正交试验,以多糖、总黄酮和提取物总量多指标,优选了党参口服液的生产工艺,口服液生产完全采用纯天然原料,不含任何防腐剂及其他添加剂,高含量的活性多糖及黄酮成分保证了党参口服液强的免疫增强作用和抗氧化作用。技术特点: 1)所用原料均为“药食同源”及可作为保健品原料的甘肃优质道地药材;2)制备工艺环保、简单;3)明确的功能,广泛的前期研究基础及宜人的口味;4)自主创新,已经获国家技术发明专利,产品设计合理。已完成
兰州大学 2021-04-14
60052移液管
宁波华茂文教股份有限公司 2021-08-23
FEP分液漏斗
产品详细介绍 FEP分液漏斗 聚全氟乙丙烯FEP分液漏斗: 漏斗壁对溶剂无粘贴性和吸附,可完全排空,分界面清晰可见,密封,可高压灭菌。 聚全氟乙丙烯(FEP、Teflon、F46、氟四六)特性: 聚全氟乙烯是四氟乙烯和六氟丙烯的共聚物,是一种高性能的材料,其特性如下: 1.热稳定性  在-200℃~+205℃温度范围内有优异、稳定的表现。 2.化学稳定性  包括在热、光、潮湿等绝大部分暴露环境下都有很好的化学稳定性。 3.不粘性  在塑料中有着最低的临界表面能;疏水疏油性以及优秀的脱模性。 4.有优异的电性能  在很宽的温度以及频率范围内有着很低的介电常数、介电损耗以及很高的介电强电。 5.长时间的耐气候性  对臭氧、阳光等气候条件有优异的耐候性。 6.高透明性  紫外线、可见光有很好的穿透性;相对于其他塑料有最低的折射系数。 7.阻燃性  在大气里不能燃烧。(极限氧指数﹥95%) 8.防污染:金属元素空白值低,铅含量小于10-11 g/ml,铀含量小于10-12 g/ml; 9.具有极低的溶出和析出. 10.耐高低温:使用温度可达﹣200℃~+205℃; 11.耐绝缘:介电性能与温度、频率无关; 12.不粘附:不粘附任何物质; 13.无毒害:具有生理惰性,可植入人体内;  14.防污染:金属元素空白值低,铅含量小于10-11 g/ml,铀含量小于10-12 g/ml。15.具有极低的溶出和析出,目前国内广泛应用在电线、电缆、护套、管材、衬阀等耐高温,耐腐蚀领域。
南京瑞尼克科技开发有限公司 2021-08-23
移液管架
产品详细介绍 移液管架
宁波舜盈机电科技有限公司 2021-08-23
柴胡注射液
商品说明书 柴胡注射液说明书 兽用非处方药 【兽药名称】 通用名称:柴胡注射液 商品名称: 汉语拼音:ChaihuZhusheye 【主要成分】柴胡。 【性状】本品为无色或微乳白色的澄明液体;气芳香。 【功能】解热。 【主治】感冒发热。 【用法与用量】肌内注射:马、牛20~40ml;羊、猪5~10ml;犬、猫1~3ml。 【不良反应】按规定剂量使用,暂未见不良反应。 【注意事项】暂无规定。 【规格】10ml(相当于原生药10g) 【包装】10ml/支×10支/盒 【贮藏】密封,避光,置阴凉处。 【有效期】二年
德州京信药业有限公司 2021-09-10
具有制动能量回收功能的工程车辆机液复合无级变速器
一种公路收费站减速带能量回收发电系统,通过减速带下方的板簧上的垂向连杆与扇形齿轮相连;再由扇形齿轮分别驱动内啮合棘轮机构一、内啮合棘轮机构二,带动发电机一、发电机二分别在减速带下压和恢复过程中发电。该种发电系统结构简单、成本低、使用安全可靠、发电效率高、不污染环境。
西南交通大学 2016-10-20
液化气/天然气切割与焊接机具
切割与焊接是各行各业广泛采用的金属加工形式。 其中,气割与气焊是利用可燃气体在燃烧时放出的热量加热金属和进一步实现对金属进行切割或焊接的一种气体火焰加工方法。由于气割和气焊具有设备简单、使用灵活方便和比其它焊割方式(例机械切割)效率高、能在各种部位实现焊割作业等特点,目前应用还十分普遍,特别是广泛用于钢板下料、铸件冒口切割和较薄的工件及熔点较低的有色金属的焊接。 在气体焊、割中,传统的氧-乙炔焰切割与焊接技术目前在我国还占据着大约90%以上的市场,但是由于乙炔是由电石与水反应生成的,而生产电石要消耗大量电能和其它一些贵重工业原料,加之乙炔还是重要的化工原料,可以进一步合成多种化工产品,因此将乙炔作为工业燃气烧掉不仅对资源是一种浪费,而且对环境有着严重污染,所以如果能广泛使用天然气或液化气(液化石油气)代替乙炔进行火焰切割和焊接,将不仅可以收到节约能源、降低成本(80%以上)的效果,而且十分有利于资源的合理利用和环境保护。 本技术已在大庆、新疆、吉林、胜利等几个油田获得工业应用,并已取得了国家专利,专利号为:射吸式液化气、天然气焊炬,实用新型专利98 2 04699.5和射吸式液化气、天然气焊割两用炬,实用新型专利98 2 04670.5 应用于油田、铸造、机械、建筑等行业的大批量切割或焊接,一切天然气或液化气方便的地方的切割或焊接。 其优越性在于:切割质量高,环境污染轻,投资少 使用性能比乙炔安全可靠
北京科技大学 2021-04-11
靶向双功能蛋白质工程溶栓新药(HV12p-rPA)研制
生物大分子药物是21世纪药物研究开发中最有前景的领域之一。运用生物信息学和计算机辅助药物设计方法开展蛋白质工程药物的分子设计是当今生物药物的研究热点。现在生物大分子药物已被全球公认为21世纪药物研究开发中最具尖端性及前沿性的研究领域,世界上所开展的所有最尖端、最先进的重大疾病治疗方法均与生物大分子药物有关,近年来蛋白质工程技术为药物的研究提供的有效的技术平台,加快了开发理想蛋白质工程药物的进程. 当前心脑血管疾病已成为对人类健康的最大威胁之一,研究开发高效的溶栓药已成为临床的迫切要求,尽管现有的溶栓药物疗效肯定,但其中大多数药物用药剂量大,治疗成本高, 还由于缺乏组织特异性和病变部位的靶向性,在体内极易降解,半衰期短或难以进入细胞内,并有潜在的出血性以及服药后血栓再生等缺点,如何提高溶栓药物的靶向性,使药物选择性地作用于血栓部位,以减少不良反应,是当前治疗心血管疾病的一个亟待解决的问题,运用基因组、蛋白组研究的最新成果以及采用现代生物技术开发新型高效靶向的溶血栓新药具有创新的学术价值和重大的社会意义及显著经济效益。近年来蛋白质工程技术将溶栓药物与抗凝剂等连接成既具溶栓活性,又具抗凝双重功能融合蛋白是目前国内外第三代溶栓药物研究的方向,新型溶栓剂的要求是具有多种功能综合在一起的理想的溶栓制剂,既具有较高的溶栓活性,又具抑制血栓的功能,从而使溶栓剂具有较高的纤维蛋白的专一性,降低溶栓药物使用后再栓塞形成的可能性。采用蛋白质工程技术设计具有抗凝溶栓双功能的新药已经成为现代药学的研究重点。同时随着基础研究血栓形成机制的进一步阐明,血栓疾病的发生非单一靶点引发而是一种多靶点疾病,针对血栓形成的特点和不同靶点进行更有效的抗血栓形成的新药研究是国内外该领域的前沿。 本项目是一种具有成为新一代溶栓新药的良好潜景的全新抗凝和溶栓双重功效水蛭素12肽-瑞普替酶融合蛋白(HV12p-rPA) 。
四川大学 2016-04-15
液基TCT病理全自动制片机24通道
1、微电脑控制,中文界面,彩色液晶显示,触摸屏操作,简捷、直观、方便。2、全程电脑自动控制,无需人工干预。自动梯度离心浓缩标本,自动抽取标本瓶废液,自动转移标本,自动制片,自动滴染色(含盐酸酒精分化)。3、每份标本独立离心浓缩,独立抽取废液,独立转移并沉降制片,独立滴染色、独立倾倒废液,标本与耗材(离心管、一次性移液针筒、沉降仓等)一一对应,不交叉使用,不重复使用,保证单独制片染色,无标本间交叉污染4、一次性移液针筒抽取染色液、盐酸酒精,因此,无堵塞管道风险,无染色液浪费。5、有效细胞单层、均匀地平铺到载玻片圆形区域上,制成细胞成分丰富、背景清晰、颜色鲜艳、形态完整、平铺均匀的细胞学涂片。6、上皮细胞、化生细胞、颈管细胞及微生物等清晰,既可直接查癌及癌前病变,也可查炎症,HPV感染、滴虫、霉菌等微生物。7、配有净化排气装置,环保密封罩活性炭过滤,吸附有害气体,保证仪器内外空气洁净,保护操作者健康。8、单次制片染色1-24任意数值只标本。9、妇科、非妇科两种工作模式;巴氏、HE两种染色方式。
孝感奥华医疗科技有限公司 2025-01-21
揭示NLRP3炎症小体在鼻病毒诱导气道黏膜重塑中的功能和机制
揭示了呼吸道上皮NLRP3炎症小体可介导鼻病毒引起的上皮细胞IL-1b的释放、细胞焦亡和粘液产生,以上细胞免疫反应和功能的改变是鼻病毒诱导气道黏膜重塑的重要机制。该研究利用人原代鼻上皮细胞3D培养模型模拟呼吸道上皮的功能和特性,确定鼻病毒所诱导的细胞免疫和功能改变依赖于DDX33/DDX58–NLRP3–caspase-1–GSDMD 信号轴;进一步研究发现鼻病毒感染的患者鼻黏膜上皮更容易出现杯状细胞增生的病理改变,且粘液增多的上皮中NLRP3和IL-1b表达水平较正常上皮或单纯基细胞增生的上皮有显著升高。       该研究揭示了NLRP3炎症小体在鼻病毒引起的呼吸道上皮细胞免疫和功能改变中的关键作用,证明了呼吸道上皮炎症小体在调控黏膜(宿主)- 病原体相互作用的新机制,为NLRP3炎症小体作为控制气道慢性炎症的干预靶点提供了理论基础和转化意义。
中山大学 2021-04-13
首页 上一页 1 2
  • ...
  • 6 7 8
  • ...
  • 211 212 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1