高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种淀粉-多酚复合纳米颗粒及其制备工艺
本发明涉及一种淀粉‑多酚复合纳米颗粒及其制备工艺,步骤如下:(1)生物酶法制备脱支纳米淀粉颗粒:用普鲁兰酶酶解糊化淀粉乳,制备短直链淀粉溶液,酒精滴定,制备淀粉纳米颗粒,冻干得到淀粉纳米颗粒粉末;(2)吸附装载多酚,制备淀粉‑多酚复合纳米颗粒:制备淀粉纳米颗粒悬浊液,加入不同量的多酚,置于振荡水浴锅中,室温吸附不同时间,超滤离心,沉淀水洗,真空冷冻干燥。本发明的淀粉‑多酚复合纳米颗粒,纳米粒子尺寸小,能增加纳米颗粒对组织的附着力,提高胃肠道对多酚的输送效率,延长多酚在胃肠道内的滞留时间,提高其生物利用率。保护具有生物活性的多酚,防止外界环境中的光、pH值、氧气等对其的影响,提高多酚的稳定性。
青岛农业大学 2021-04-13
合成多元纳米颗粒材料的旋流雾化燃烧器
1. 痛点问题 氧化物微纳米颗粒在储能材料、高端光学材料、高性能气体传感器、高端催化剂等领域均有广阔的应用前景。然而工业制备中现有的共沉淀、凝胶、浸渍等湿法合成方法,由于其原理和工艺上的限制,存在不易放大、生产不连续、产线通用性弱、废液污染、掺混不均匀等问题,尤其在被国外企业垄断的高端高熵多元氧化物颗粒生产方面,存在很大挑战。 2. 解决方案 采用火焰合成方法得到纳米颗粒具有一步工艺、纯度高、易放大、成本低、污染排放少、可控性相对较高的特点。在各种火焰形式中,本技术设计了一种基于旋流强化混合的雾化火焰合成系统,在保证较高产量的同时降低了高温区停留时间,能够显著提高火焰合成纳米颗粒的产量和生产效率,可以为各种单元、多元纳米氧化物粉体的生产提供定制化服务。 合作需求 为实现本技术的产业化和市场化,主要需求包括: 1.一支专精于纳米材料合成与收集方面的研发团队,能够承接专利技术,并大幅拓展至规模化、定制化产业生产; 2.300平米以上的科学实验场地与300万以上的启动资金; 3.与光学、电学领域高端粉体需求方有较广泛的联系,能够协助产品、技术拓展市场。
清华大学 2021-12-29
一种核壳结构合金纳米颗粒的制备方法
本发明公开了一种核壳型合金纳米颗粒的制备方法。该方法包括:使用有机硅烷偶联剂在氧化物基底表面生长出自组装单分子层。随后在生长有自组装单分子层的基底表面通过原子层沉积生长一种金属核心,接着在金属核心上通过原子层沉积选择性地生长另一种包覆核心的金属壳层。该方法可以通过调节原子层沉积的生长循环次数控制核心尺寸与壳层厚度,以及核与壳的合金成分比例。按照本发明使用的基底改性方法实现核壳结构合金颗粒的制备,由于采用了原子层沉积的工艺,因此对于生长的核壳结构合金颗粒能够达到纳米级的可控性。并且基于基底改性的方法对
华中科技大学 2021-04-14
一种纳米颗粒增强的热障涂层的制备方法
本发明公开了一种纳米颗粒增强的热障涂层的制备方法,用于 在基体表面制备热障涂层,属于热障涂层制备领域,其包括 S1 将纳米 颗粒团聚成 60μm~120μm 的团聚粉末;S2 对团聚粉末进行热处理 以获得烧结粉末,所述烧结粉末粒径为 50μm~100μm;S3 将经步骤 S2 获得的所述烧结粉末送入基体被热源熔化后获得的熔池内,使烧结 粉末与熔池一起冷却凝固,以在基体表面制备获得纳米颗粒增强的热 障涂层。本发明方法过
华中科技大学 2021-04-14
一种核壳结构合金纳米颗粒的制备方法
本发明公开了一种核壳型合金纳米颗粒的制备方法。该方法包 括:使用有机硅烷偶联剂在氧化物基底表面生长出自组装单分子层。 随后在生长有自组装单分子层的基底表面通过原子层沉积生长一种金 属核心,接着在金属核心上通过原子层沉积选择性地生长另一种包覆 核心的金属壳层。该方法可以通过调节原子层沉积的生长循环次数控 制核心尺寸与壳层厚度,以及核与壳的合金成分比例。按照本发明使 用的基底改性方法实现核壳结构合金颗粒的制备,由于采用了原子层 沉积的工艺,因此对于生长的核壳结构合金颗粒能够达到纳米级的可 控性。并且基于
华中科技大学 2021-04-14
高纯气相法氧化钛
产品特点   高纯气相二氧化钛通过等离子体气相燃烧法制备,纯度高、粒径小、分布均匀,比表面积大、表面干净,无残余杂质,松装密度低,易于分散,小颗粒的气相氧化钛有很好的光催化效果,能分解在空气中的有害气体和部分无机化合物,空气净化、杀菌、除臭、防霉。纳米二氧化钛有**、自洁净性。   产品参数 产品名称 型号 平均粒度(nm) 纯度(%) 比表面积(m2/g) 松装密度(g/cm3) 晶型 颜色 气相二氧化钛 ZH-Ti-10NR 10 >99.9 80+-20 0.05 锐钛 白色 气相二氧化钛 ZH-Ti-20NR 20 >99.9 60+-20 0.06 锐钛 白色 气相二氧化钛 ZH-Ti-20NJ 20 >99.99 50+-20 0.06 金红石 白色 气相二氧化钛 ZH-Ti-50NJ 50 >99.99 30+-10 0.09 金红石 白色 气相二氧化钛 ZH-Ti25 20 >99.9 50+-20 0.06 混合晶型 白色 加工定制 为客户提供定制颗粒大小和表面改性处理   产品应用   1、高纯气相二氧化钛有强的光催化和优异透明性,作为一种新型材料已应用于涂料、室内空气净化等产品中;   2、锐钛型纳米气相二氧化钛具有好的光催化效果,广泛应用于光触媒及空气净化产品;   3、锐钛型纳米气相二氧化钛因比表面积大,在光催化,太阳能电池,环境净化,催化剂载体,锂电池以及气体传感器等方面广泛应用,可应用于各种**领域产品,锂电池材料。   4、纳米气相二氧化钛应用于塑料、橡胶和功能纤维、涂料、电池产品,它能提高产品的抗粉化能力、耐候性和产品的强度,同时保持产品的颜色光泽,延长产品的使用期;   5、纳米气相二氧化钛应用于油墨、涂料、纺织,能很好的提高其粘附力、抗老化、耐擦洗性能。   产品表征       包装储存   本品为充惰气塑料袋包装,密封保存于干燥、阴凉的环境中,不宜暴露空气中,防受潮发生氧化团聚,影响分散性能和使用效果;包装数量可以根据客户要求提供,分装。   技术咨询与索样   联系人:王经理(Mr.Wang)   电话:18133608898  微信:18133608898 QQ:3355407318 邮箱:sales@hfzhnano.com
安徽中航纳米技术发展有限公司 2025-11-28
纳米金-纳米纤维功能复合物修饰电极的制备方法
本发明是一种纳米金/纳米纤维功能复合物修饰电极的制备方法,具体制备方法包括:1)纺丝溶液配制;2)静电纺丝制备复合纳米纤维,形成复合纳米纤维PA6-MCWNTs修饰电极;3)复合纳米纤维电沉积纳米金功能化。将复合纳米纤维PA6-MCWNTs修饰电极浸于含有HAuCl4的沉积液中,采用多电位阶跃法,将HAuCl4还原成纳米金并同步直接沉积在PA6-MCWNTs复合纳米纤维表面。本发明获得具有稳定性好、比表面积大、生物相容性良好、电子传递速率快、纳米直径孔径分布均匀等特点的功能复合物电极修饰材料。
东南大学 2021-04-13
一种用于超级电容器电极材料的纳米氧化镍的制备方法及其制备的纳米氧化镍
本发明公开了一种用于超级电容器电极材料的纳米氧化镍的制备方法及其制备的纳米氧化镍,首先将NiCl2·6H2O与氯化胆碱基深共熔溶剂混合,得到质量浓度为10~30g/L的溶液Ⅰ;加热至120~150℃,将100~300份的去离子水与1000份溶液Ⅰ混合,反应0.5~2h,经离心分离得到沉淀物,再经洗涤、干燥、煅烧后,得到所述的纳米氧化镍。本制备方法条件温和、耗时短,适合大规模工业化生产;制备得到的花状纳米NiO的晶粒粒径小于10nm,粒径分布均匀且比表面积大,以其作为电极材料制备的超级电容器,具有较高的可逆容量和循环性能,3000次充放电循环后比容量仍稳定在460F/g附近。
浙江大学 2021-04-11
一种颗粒物荷电量测量装置及方法
本发明涉及颗粒物荷电量测量装置及方法,所述装置包括顺次连接的气瓶、颗粒发生装置、荷电器、检测器和引风机,所述气瓶与颗粒发生装置之间设有第一流量计,检测器与引风机之间设有第二流量计;所述荷电器设置在检测器左端,检测器右端通过管道与引风机连通;所述荷电器通过第一导线与荷电器高压电源相连,检测器通过第二导线与检测器高压电源相连。本发明结构简单,设计合理,能够精准测量静电除尘器中各单一颗粒的荷电量,从而研究静电除尘器颗粒的荷电机理;有助于静电除尘系统进行设计和研究,从而提高静电除尘器除尘效率,有效地控制燃煤烟气颗粒物的排放。
浙江大学 2021-04-11
一种颗粒物荷电量测量装置及方法
本发明涉及颗粒物荷电量测量装置及方法,所述装置包括顺次连接的气瓶、颗粒发生装置、荷电器、检测器和引风机,所述气瓶与颗粒发生装置之间设有第一流量计,检测器与引风机之间设有第二流量计;所述荷电器设置在检测器左端,检测器右端通过管道与引风机连通;所述荷电器通过第一导线与荷电器高压电源相连,检测器通过第二导线与检测器高压电源相连。本发明结构简单,设计合理,能够精准测量静电除尘器中各单一颗粒的荷电量,从而研究静电除尘器颗粒的荷电机理;有助于静电除尘系统进行设计和研究,从而提高静电除尘器除尘效率,有效地控制燃煤烟气颗粒物的排放。
浙江大学 2021-04-13
首页 上一页 1 2
  • ...
  • 13 14 15
  • ...
  • 252 253 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1