高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
家用“上转换”荧光定量检测平台
该定量检测平台可实现疾病诊断、食品安全监测、环境监测以及健康管理。目前我们产品主要是针对心血管疾病患者的早期诊断、危险分层、用药指导及预后评估。 用上转换荧光颗粒使得检测灵敏度相较传统试纸提高三个数量级,且实现了多目标物联合检测,检测时间仅需30min,可用于家庭、乡镇社区医院的心衰诊断和预后。本项目在产业化实现路径中主要经历临床前研究、临床研究、产品上市及大规模销售三个阶段。目前已完成临床前阶段。 在体外诊断产业中,最有发展潜力的是POCT技术,心肌标志物是POCT中增速最快的细分领域,市场空间巨大。
西安交通大学 2021-04-11
近红外二区荧光探针
研究了分子给体单元调控对荧光性能的影响。由于染料发射波长越长越有利于增加穿透深度,于是增加了一个连接S单元的噻吩作为第二给体(D2)。噻吩的引入可以增加分子的共轭长度从而使荧光波长红移,但导致QY下降。进一步对连接受体A的第一给体单元(D1)进行结构调控,首次以辛烷噻吩作为D1。相对应的染料IR-FTAP在水溶液中QY高达5.3%,明显优于其它给体单元。 通过分子动力学模型与密度泛函理论的计算,发现憎水性的辛烷噻吩相较于其它D1单元可以有效减少共轭骨架中心与水分子的作用。计算结果也进一步证明了水中的QY与骨架中心与水分子的相互作用紧密联系。 还在IR-FE分子的基础上引入一条PEG链并在其他三条侧链引入羧基得到分子IR-FEPC。IR-FEPC可以高效的与重组人绒毛膜促性腺激素共价连接。斯坦福大学戴宏杰课题组等成功将这一探针应用于卵巢三个阶段的促黄体生成激素受体的特异成像
南方科技大学 2021-04-13
荧光纳米晶液相悬浮芯片
将基于荧光纳米晶液相悬浮芯片技术应用于重大疾病的临床检测方法。研发成功了基于荧光纳米晶体的多指标检测技术,掌握了荧光纳米晶体、荧光微球的核心制备技术、抗体的偶联技术以及临床诊断的检测技术等。
上海交通大学 2023-05-09
原子荧光光度计
1.产品简介 AFS-680是在原有型号基础上减小了光源与PMT的激发角度,既增加了接收荧光信号强度,又降低了背景干扰,从而提高仪器灵敏度。 采用半透明耐腐蚀的ABS磁吸结构的仪器前门,避免了外部空气的绕动干扰,同时可在线观察测试过程的化学反应情况。 电路上增加分道信号控制模块,双道同时测定时,即使样品中测定的两元素浓度差异很大的情况下仍能保证无道间干扰。特别适用于样品量较大双道同时测定的检测部门。 AFS-680型原子荧光光度计广泛应用于教学研究、卫生防疫、医疗临床检验、药品检验、食品卫生检验、城市给排水检验、农产品检验、饮料检验、环保监测、化妆品检验、冶金样品检验、地质普查检测等行业,创新的软、硬件设计确保样品分析的准确性、安全性、易用性,仪器维护简单便捷。 2.仪器特点 *双道两元素可同时测量,适用于样品中砷、汞、硒、锡、铅、铋、锑、碲、锗、镉、锌、金等十二种元素的痕量分析 *空芯阴极灯采用新式脉冲调制/恒流驱动供电方式 *采用断续流动进样装置。(样品空白交替引入,避免样品交叉污染,保证测量准确性).具有载气稳流装置 ,既可在线消除硼氢化钾产生的气泡,又可降低试剂间扩散效应,提高仪器稳定性.空芯阴极灯采用编码技术,仪器自动识别空芯阴极灯,并可监控空芯阴极灯的工作状态及使用寿命.采用高效涌流式两级化学气液反应分离装置,化学反应更完全,气液分离效果更佳,特别适合岩矿、土壤等复杂样品测定 *采用新型节气型气路设计,可随时控制关闭气源,节约氩气用量,减少仪器运行成本.仪器电路采用强、弱电分离及新型高集度模块、稳流分离式气路发生装置,新型节气型气路设计,可随时控制关闭气源,节约氩气用量,减少仪器运行成本 *采用密闭式石英原子化器.仪器采用低温炉原子器 *具有外置滤光氩氢火焰实时观察窗,可直接对火焰状态实时进行观察 3.产品特性 仪器功能 *单道、双道同时检测功能。 *单点、两点、多点建立标准曲线功能。 *特有的单点、两点标准曲线校正功能。 *特有的双道独立曲线校正、双道独立稀释功能。 *自动稀释高浓度样品功能。 *特有的连续流动进样及断续进样等全面的进样方式控制功能。 *特有的实时观测测试过程,在线调节原子化器三维参数功能。 *特有的压力自平衡式废液排除功能,无需额外的泵排废。 *特有的小背景扣除功能。 *友好的软件界面,推荐最佳仪器测试条件,测试数据的图形显示和回放、统计与查询,各种图形、数据的页面保存、输出、备份和打印等功能。悬浮式测量窗口,增加可显示信息数量(荧光强度、空白值等)。 *仪器自检及断气预警保护功能。 *特有的可与液相及在线消解单元进行无缝对接实现砷汞硒等元素的形态分析功能。 干扰及消除方法 (1)Fe、Al、Mg、Ca、K、Na、Cu、Pb、Li、Rb、Cs、Mn、W、Mo、V、Sr、Ti、Sn、Ba、Ti、Cd、Co、Ni、Cr、Ge、Ga、In不干扰测定。 (2)可形成氢化物元素As、Sb、Bi不大于500μg/mL一般不干扰测定。 (3)Au
美析(中国)仪器有限公司 2021-12-08
原子荧光光度计
1.产品简介AFS-680是在原有型号基础上减小了光源与PMT的激发角度,既增加了接收荧光信号强度,又降低了背景干扰,从而提高仪器灵敏度。采用半透明耐腐蚀的ABS磁吸结构的仪器前门,避免了外部空气的绕动干扰,同时可在线观察测试过程的化学反应情况。电路上增加分道信号控制模块,双道同时测定时,即使样品中测定的两元素浓度差异很大的情况下仍能保证无道间干扰。特别适用于样品量较大双道同时测定的检测部门。AFS-680型原子荧光光度计广泛应用于教学研究、卫生防疫、医疗临床检验、药品检验、食品卫生检验、城市给排水检验、农产品检验、饮料检验、环保监测、化妆品检验、冶金样品检验、地质普查检测等行业,创新的软、硬件设计确保样品分析的准确性、安全性、易用性,仪器维护简单便捷。2.仪器特点*双道两元素可同时测量,适用于样品中砷、汞、硒、锡、铅、铋、锑、碲、锗、镉、锌、金等十二种元素的痕量分析*空芯阴极灯采用新式脉冲调制/恒流驱动供电方式*采用断续流动进样装置。(样品空白交替引入,避免样品交叉污染,保证测量准确性).具有载气稳流装置 ,既可在线消除硼氢化钾产生的气泡,又可降低试剂间扩散效应,提高仪器稳定性.空芯阴极灯采用编码技术,仪器自动识别空芯阴极灯,并可监控空芯阴极灯的工作状态及使用寿命.采用高效涌流式两级化学气液反应分离装置,化学反应更完全,气液分离效果更佳,特别适合岩矿、土壤等复杂样品测定*采用新型节气型气路设计,可随时控制关闭气源,节约氩气用量,减少仪器运行成本.仪器电路采用强、弱电分离及新型高集度模块、稳流分离式气路发生装置,新型节气型气路设计,可随时控制关闭气源,节约氩气用量,减少仪器运行成本*采用密闭式石英原子化器.仪器采用低温炉原子器*具有外置滤光氩氢火焰实时观察窗,可直接对火焰状态实时进行观察3.产品特性仪器功能*单道、双道同时检测功能。*单点、两点、多点建立标准曲线功能。*特有的单点、两点标准曲线校正功能。*特有的双道独立曲线校正、双道独立稀释功能。*自动稀释高浓度样品功能。*特有的连续流动进样及断续进样等全面的进样方式控制功能。*特有的实时观测测试过程,在线调节原子化器三维参数功能。*特有的压力自平衡式废液排除功能,无需额外的泵排废。*特有的小背景扣除功能。*友好的软件界面,推荐最佳仪器测试条件,测试数据的图形显示和回放、统计与查询,各种图形、数据的页面保存、输出、备份和打印等功能。悬浮式测量窗口,增加可显示信息数量(荧光强度、空白值等)。*仪器自检及断气预警保护功能。*特有的可与液相及在线消解单元进行无缝对接实现砷汞硒等元素的形态分析功能。干扰及消除方法(1)Fe、Al、Mg、Ca、K、Na、Cu、Pb、Li、Rb、Cs、Mn、W、Mo、V、Sr、Ti、Sn、Ba、Ti、Cd、Co、Ni、Cr、Ge、Ga、In不干扰测定。(2)可形成氢化物元素As、Sb、Bi不大于500μg/mL一般不干扰测定。(3)Au<5μg/mL,Ag<25μg/mL不干扰测定。(4)Au、Ag、Pt和Pd等元素有干扰时,可以加入硫脲消除贵金属干扰,降低KBH4浓度或加入铁盐也可减轻上述元素干扰。氢化物发生系统采用具有多功能反应模块,该模块高度集成了氢化反应、气液分离、废液排除等功能于一身。测试无机砷时产生的大量气泡对测试结果造成很大影响。多功能反应模块可以有效消减气泡,既简化了管路,又减少了故障点,直接插拔装卸,为操作、维护仪器带来便利。4.技术指标样品原子化*原子化器:氢化法屏蔽式原子化器*载气/屏蔽气:氩气样品制备与导入*蒸汽:采用新型断续流动无残留蒸气发生反应系统,反应效率更高*氢化物发生器:采用高效涌流式两级化学气液反应分离装置,化学反应更完全,气液分离效果更佳,特别适合岩矿、土壤等复杂样品测定*蠕动泵:6通道蠕动泵,带两个压力可调的压管夹,软件调速*排气系统:特有的压力自平衡式废液排除功能,无需额外的泵排废光学系统*光学设计:短焦距,非色散,一体化密闭光学设计*双通道:双道两元素可同时测量*光源:空芯阴极灯采用编码技术,仪器自动识别空芯阴极灯,并可监控空芯阴极灯的工作状态及使用寿命*检测器:采用进口光电倍增管*线性范围:大于三个数量级数据处理系统: *可随意脱机/连机切换工作.单/多窗口任意打开.单/多数据库任选.进一步提高测量准确度的管理样校正.无限制报告格式编排,测量数据都能切换到EXCEL进行修定.测量数据可通过局域网实现资源共享 部分适用标准:GB 5009.11-2014 食品安全国家标准 食品中总砷及无机砷的测定HJ 702-2014 固体废物 汞、砷、硒、铋、锑的测定 微波消解_原子荧光法GB 5009.17-2014 食品安全国家标准 食品中总汞及有机汞的测定HJ 694-2014 水质 汞、砷、硒、铋和锑的测定 原子荧光法GB/T 22105-2008 土壤质量 总汞、总砷、总铅的测定 原子荧光法HJ 1133-2020环境空气和废气 颗粒物中砷、硒、铋、锑的测定 原子荧光法HJ 680-2013 土壤和沉积物 汞、砷、硒、铋、锑的测定 微波消解原子荧光法应用领域环境(Hg,Pb,Cd,As… )废水、饮用水、土壤等制药(Hg,Pb,As,Se…)有效成分、辅料等临床医学(Se,Pb,Hg,As…)血液、尿液  、组织、指甲、头发等农业/食品安全(As,Hg,Pb,Sb,Se… )乳制品、肉类、酒类、饲料和动物副产品、烟草等冶金(Ge,Hg,Se,As , Sb,Te ,Au… )岩石和矿石、钢铁和合金、金属等石化(Hg,Pb,As,Cd,Sn,Zn…)燃料、润滑油、原油等  
上海美析仪器有限公司 2021-12-16
碳纤维增强碳化硅陶瓷基复合材料
碳纤维增强碳化硅陶瓷基复合材料耐腐蚀、耐高温、耐磨损、韧性高,能够广泛用于能源、交通、化工等领域的关键部件,比如摩擦制动材料、耐化学腐蚀叶片等。
东南大学 2025-02-08
高性能低膨胀铝基复合材料及构件
卫星在轨运行和返回过程中需经历极端高低温环境,构件尺寸的稳定是保证卫星在轨高精度、返回高安全、任务高可靠的关键。针对卫星搭载的某宽带微波载荷与卫星本体材料之间热膨胀系数不匹配极易导致的载荷在轨及返回过程中载荷接收精度不稳定、信息传输不连续等问题。我校陈骏教授团队以原创的负热膨胀技术研发了具有轻质、热膨胀系数低、力学性能优异、尺寸稳定性好的高性能低膨胀铝基复合材料,并研制了系列关键连接内置件、环件等高性能低膨胀构件,首次将负热膨胀技术应用到我国的卫星上,填补了高性能低膨胀金属构件在工程应用领域的空白。该技术使得某宽带微波载荷与卫星本体之间热膨胀匹配性增强、界面应力大幅度减小,保证了卫星在轨与返回过程中信号高精度传输与接收,助力卫星成功返回。 图1 实践十九号卫星成功返回(图片来源国家航天局) 图2 高性能低膨胀铝基复合材料及构件应用于全球首颗可重复使用返回式技术试验卫星(图片来源央视新闻频道)
北京科技大学 2025-05-21
一种基于氮化钛的新型纳米结构光阴极
发明公开了一种基于氮化钛材料的新型纳米结构光阴极;所述氮化钛光阴极包括衬底、氮化钛纳米结构层;还涉及了该型氮化钛光阴极的制备方法,及其电场辅助型光阴极测试装置,所述电场辅助型光阴极包括绝缘垫片、金属薄板阳极、上/下电极导线、外加偏压电源。本设计中核心的氮化钛纳米结构具有表面等离激元共振效应,会带来光子吸收增强和局域电场增强,且材料功函数仅约为3.7eV和导电性优良,有助于光致电子的发射;通过设计氮化钛结构的组成纳米图形和结构参数,可获得与入射激励光波相匹配的等离激元共振,实现可光调控的电子发射。因所述氮化钛材料还具有稳定的物化性质,从而本发明提供了一种可作为稳定、高效率的光阴极。
东南大学 2021-04-11
基于反应热风险特性的重氮化工艺优化
本研究基于重氮工艺反应热危险性,利用先进的热分析设备(反应量热仪RC1、绝热量热仪ARC、差示扫描量热仪DSC)对重氮工艺进行分析,通过测量获得重氮工艺的目标工艺温度、失控后体系能够达到的最高温度、失控体系最大反应速率到达时间为24小时对应的温度、技术最高温度等数据,改进工艺参数,降低工艺的热危险性,防止失控反应,提高化工工艺的本质安全性。
南京工业大学 2021-01-12
具有电场调制功能的二芳基乙烯类光致变色化合物及合成方法
本发明提供一种具有电场调制功能的二芳基乙烯类光致变色化合物及合成方法,该方法包括以下步骤:首先合成含有电子传输基团的芳杂环中间体;然后合成含有电荷传输基团的芳杂环中间体;将所述这两部份中间体分别结合到一个八氟环戊烯分子的两个双键碳上的氟原子上,形成含两种不同类型电荷传输基团的不对称型二芳基乙烯类光致变色化合物;含电子传输基团的中间体化合物则须先制成单取代的全氟环戊烯中间体才能顺利得到目标产物。有益效果是该化合物具有更好的光致变色性和抗疲劳性,更重要的是在这类化合物中可以引入电场干预的光致变色性。由于不对称型二芳基乙烯类光致变色化合物分子的特性,可制造出可控的光致变色新材料,在光信息存储和新型光学器件领域,具有广阔的应用前景。
天津城建大学 2021-04-11
首页 上一页 1 2
  • ...
  • 16 17 18
  • ...
  • 192 193 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1