高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
纳米晶氮碳化钛陶瓷超细粉的高温碳氮化制备法
一种纳米晶氮碳化钛陶瓷超细粉的高温碳氮化反应制备法,以纳米氧化钛和纳米碳黑为原料,工艺步骤依次为配料、混料、干燥、装料、高温碳氮化、球磨、过筛。此法工艺简单,成本较低,较一般碳热还原法节约能源,容易实现规模化工业生产。通过控制反应温度、保温时间、氮气压力(或流量)、碳钛配比等工艺因素可以合成各种氮含量的氮碳化钛纳米晶超细粉。用此法制备的氮碳化钛粉末为球形,分散性较好,平均粒度为100~200NM,平均晶粒度为20~50NM,纯度达99%以上。
四川大学 2021-04-11
城镇污水双污泥反硝化强化脱氮及磷回收技术
该技术主要应用于环境工程污水处理领域。首次将双污泥反硝化除磷工艺和诱导结晶技术结合起来,解决了限制传统污水处理生物脱氮除磷工艺中碳源不足和泥龄矛盾等问题。
东南大学 2021-04-10
硝化棉氮量及其分布均匀性快速测试系统(产品)
成果简介:目前硝化棉(NC)生产厂家对其质量的监控主要是采用各种方法测定其含氮量,而人们在应用过程中发现,不仅是 NC 的含氮量,而且氮量 分布的均匀性也是影响其一系列工艺和应用性能的重要指标之一。但一直以 来缺乏一套能够在工业上应用的快速、准确、有效地表征NC 氮量分布均匀 性的指标和测试方法。北京理工大学纤维素技术研发中心与四川北方硝化棉 公司联合,研制出一套在国内外首创的 NC 硝化均匀性质量快速分析仪。该系统以偏光显微镜为核心部件,同时集成了现代 CCD、角度传感器和计算机硬软件,是目前国
北京理工大学 2021-04-14
城市污水生物膜强化脱氮多级A/O工艺
北京工业大学 2021-04-14
一种氮掺杂碳纳米材料、其制备方法及应用
本发明公开了一种氮掺杂碳纳米材料、其制备方法及其应用于 制备燃料电池阴极材料。所述氮掺杂碳纳米材料包括含氮杂环化合物 以及碳纳米材料,其中氮的质量含量在 2%至 10.4%之间。其制备方法 包括以下步骤:(1)将表面活化的碳纳米材料与含氮络合物,按照质 量比例 1:1 至 1:5 均匀混合,得到前驱体混合物;(2)将步骤(1)中 获得的前驱体混合物在保护气体环境下,升温至 800℃至 1000℃,煅 烧 2 小时至
华中科技大学 2021-04-14
电生物质共转化为合成天然气工艺
针对我国严重弃水问题,提出将冗余水电就地转化为易保存和运输的清洁能源天然气的整体工艺,冗余水电电解水产生氢气,生物质气化提供碳源,制备甲烷化催化剂,氢气和合成气在高效催化剂作用下,在特殊设计的流化床反应器中反应生成天然气,实现水电和天然气系统的交叉互补运行,提供能源优势互补新途径。建成了一套电转气小型示范装置,运行结果表明:催化剂活性高、性能稳定,甲烷选择性>99.9%,转化率可达100%。
东南大学 2021-04-11
白酒丢糟及农产秸杆的生物质能转化研究
成果描述:本项目通过对白酒丢糟、秸秆废弃物的有效降解利用,进行了特定性状微生物育种研究,开发了白酒丢糟和农产秸秆从降解糖化到无灭菌连续酒精发酵的工艺路线,提出了农产秸秆和酿酒蒸馏废水混合物高效沼气发酵工艺,实现白酒丢糟及秸秆废弃物向燃料酒精、沼气等可再生生物能源的转化,可以促使传统白酒产业形成更为合理的资源-产物-资源生态酿酒产业链,实现废弃物的减排和传统酿酒企业综合效益的整体提高。对于解决大量白酒丢糟、秸秆资源的浪费,促进酿酒生态产业的形成、生物能源生产原料的拓展等,具有重要意义。市场前景分析:本项目成果的推广实施对象为中国传统白酒生产及酒精生产企业,特别是大中型白酒生产企业。由于这些企业大都拥有酒精生产车间或合作酒精生产厂,不必经过巨额的设备投资,很容易通过技术改造将燃料酒精的生产融入原有的生产体系,而丢糟的大量排放和粮食的大量消耗,是大中型白酒企业不能回避的重大问题,也自然成为本研究成果的主要实施对象。目前已有白酒企业表达愿意参与共同合作开发的意向,研究成果的应用前景可观。与同类成果相比的优势分析:(1)系统性地探讨并建立了白酒丢糟和农产秸秆从降解糖化到无灭菌连续酒精发酵的完整工艺,国内外未见报道。 (2)建立了农产秸秆和酿酒蒸馏废水混合物高效沼气发酵工艺,属国内领先技术, (3)建立了白酒丢糟及农产秸秆废弃物先降解发酵生产乙醇,然后再将废渣废液转化为沼气的梯级能源转化体系,属国际先进技术。 年产300吨,年销售收入300万元。
四川大学 2021-04-11
旋转锥式生物质闪速热解能液化装置
本装置采用以旋转锥反应器为核心的闪速热解技术,可最大限度地生产生物质油。该技术能以连续的工艺将低品位的生物质(锯末、稻壳、秸杆等有机废弃物)转化为易储存、易运输、能量密度高且具有商业价值的生物质油,同时产生的副产品还有中热值的可燃气和少量的炭。生物质油可以直接用于现有的锅炉燃烧,更重要的一步通过加氢处理和沸石合成技术将生物质油改质为热值较高的烃类燃料,合成为生物质汽油或生物质柴油。该技术为生物质及有机废弃物的有效清洁利用和可再生能源的生产探索了一条新途径。 生物质油除了能量的应用外,也可作为化工工业的重要原料,经GC-MS分析,证明含有数十种有机化合物,它们经过深加工可以制取染料、农药、医药、香料、树脂和助剂等精细化工产品。例如生物质油中的3-甲氧基-4羟基苯甲醛(即香草醛),广泛用于定香剂、变味剂和调合剂的重要原料。它是一种天然香料,所以价格十分昂贵。因此,生物质闪速热解转化的生物质油作为绿色化工产品的生产原料也具有广泛的应用前景。技术指标 生物质加工量10kg/h            气相滞留期0.1~1秒 生物质颗料尺寸<2mm           生物质油产率60%(占生物质原料重量比)
上海理工大学 2021-04-11
水电/生物质共转化为合成天然气工艺
针对我国严重弃水问题,提出将冗余水电就地转化为易保存和运输的清洁能源天然气的整体工艺,冗余水电电解水产生氢气,生物质气化提供碳源,制备甲烷化催化剂,氢气和合成气在高效催化剂作用下,在特殊设计的流化床反应器中反应生成天然气,实现水电和天然气系统的交叉互补运行,提供能源优势互补新途径。建成了一套电转气小型示范装置,稳定运行并测试后,其运行结果表明:催化剂活性高、性能稳定,甲烷选择性大于99.9[[[[%]]]],转化率可达100[[[[%]]]]。
东南大学 2021-04-11
菊芋生物质生产葡萄糖酸和山梨醇技术
葡萄糖酸和山梨醇都是用途非常广泛的化工原料。目前山梨醇的生产主要是通过化学催化 加氢裂解葡萄糖得到的,这是一种高能耗、高分离成本且高污染的生产工艺。生物法生产山梨 醇主要利用运动发酵单孢菌周质空间内的葡萄糖果糖氧化酶催化氧化还原果糖和葡萄糖得到, 反应过程简单,条件温和且环境友好。但生物法的底物葡萄糖和果糖相对于产物来讲是价格不 菲的。因此,分别利用价格低廉的菊芋生物质原料替代果糖和木薯淀粉质生物质代替葡萄糖来 生产山梨醇和葡萄糖酸可以大大提高该生产过程的经济性。 本项目的菊芋生物质生产葡萄糖酸和山梨醇技术采用华东理工大学研发的利用固定化运 动发酵单胞菌同时催化菊芋果糖和木薯葡萄糖生产高浓度山梨醇和葡萄糖酸的技术。该技术主 要包括高浓度菊芋果糖和木薯葡萄糖混合水解液的生产、重组运动发酵单胞菌的细胞固定化和 利用运动发酵单孢菌催化果糖和葡萄糖生产高浓度山梨醇和葡萄糖酸等主要工序。其中,高浓 度菊芋果糖和木薯葡萄糖混合水解液的制备采用同一种糖化酶同时催化菊芋聚果糖的酶解和木 薯淀粉的酶解,避免了昂贵的多酶组分的添加,有效降低了催化底物-葡萄糖和果糖的生产成 本;运动发酵单胞菌的细胞固定化则实现了催化细胞的循环使用,降低了催化成本;利用运动 发酵单孢菌催化果糖和葡萄糖生产高浓度山梨醇和葡萄糖酸则可得到浓度达20%以上的山梨醇 溶液,大大降低了后续的分离成本,果糖和葡萄糖转化率都在90%以上。
华东理工大学 2021-04-11
首页 上一页 1 2
  • ...
  • 20 21 22
  • ...
  • 49 50 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1