高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
水制氢工艺
本项目采用了一种新型制氢工艺,该工艺主要包括四部分:1)铁氧化物与水反应得到纯净的氢气;2)一氧化碳还原铁氧化物;3)还原反应产生的二氧化碳与碳反应生成一氧化碳;4)还原气造气过程中所需碳源由煤经过高温炭化得到。整个工艺过程消耗的是煤和水,得到的产物是纯净的氢气、纯净的一氧化碳和煤炭化释放出的煤气(主要成分是甲烷、氢气和一氧化碳,可直接作为燃气使用)。该方法的优势在于:1)不把煤作为燃料,而将其作为制氢的原料,可以实现煤炭中有害物质的集中处理与转化,从而避免煤炭分散燃烧带来的环境污染和高处理成本。2)煤转化为气体燃料,其能量利用效率大大提高,如煤基氢—电联产系统效率可达75%,纯发电效率达到60%,而传统的煤燃烧发电系统的效率只有33%~35%。3)本方法中氢气和一氧化碳分别在不同的反应阶段,由不同的反应器中分别输出,可以直接得到纯净的氢气和一氧化碳,与传统的煤气化制氢工艺相比,减少了分离、净化环节,工艺更简单。4)各种煤经过高温炭化处理后都可以作为反应所需的碳源,而煤气化制氢工艺则对煤种的适应性有较大局限性。已证实了该工艺的可行性与稳定性,项目目前进入进入中试放大研究阶段。
河北工业大学 2021-04-13
太阳能分解水制氢
氢作为二次可再生的清洁能源受到全世界的普遍关注。2019年我国首次将氢能源写入《政府工作报告》,预计2022年市场规模将达到1.8万亿人民币。目前氢气主要有两个来源:化石能源重整和水电解。其中,化石能源重整制氢是最主要的来源,占比约97%,成本低廉但二氧化碳排放居高不下。电解水制氢立足于未来碳减排,被各界寄予厚望,但电力成本居高不下,且目前其实际碳排放(约36千克)甚至高于煤制氢(约20千克)的碳排放。利用可再生能源实现低成本、低排放制氢是未来发展主要目标。 本项目通过半导体多级纳米结构的有序组装,不仅减少光电极对太阳光的反射、拓宽了光电极对太阳光谱的吸收范围;同时通过对材料结构及成分的调控实现对半导体能带的有效裁减,促进光生载流子的分离,以及表面电化学氧化还原反应动力学。进一步通过表面修饰显著提升光电极的工作寿命。本项目通过精确调控、系统优化与多功能协效,目前已经实现了无外加偏压下完全通过太阳能高效分解水制氢,其中太阳能光转化氢效率高达10%。
北京理工大学 2023-05-09
无膜分步法电解水制氢
传统的电解工业(电解水、氯碱工业)阴、阳极会同时产生两种气体,一般采用离子交换膜防止两种气体的混合,避免爆炸性混合气体的产生。离子交换膜的使用增加了电解的成本,此外膜内阻也增加了电解的能耗。且由于阳极和阴极室的气体压力必须通过稳定的电源输入保持平衡,很难利用风能和太阳能等不稳定的可持续能源来直接为离子膜电解池供电。另一方面,电解池中的高压气体和阳极氧化过程的中间产物也会加剧膜的老化降解,近一步增加电解成本。基于电池电极的分步法无膜电解技术有望为电池电极反应推出一个新的研究方向,随着电池工业迅速发展,电池电极的制备已经非常成熟,分步法电解技术很容易利用现有的商业化电极实现产业化。
复旦大学 2021-04-10
湿法稀磷酸制全水溶磷酸二氢钾技术
成果描述:用湿法稀磷酸制备磷酸二氢钾技术已完成5000 吨/年中试,现开始设计3万吨装置。湿法磷酸先与氯化钾反应,然后用萃取剂萃取盐酸,有机相经洗涤,用氨反萃得到氯化铵,水相经过滤、浓缩、结晶得到磷酸二氢钾。本技术的P2O5萃取率高,原料酸中80 %的P2O5进入到产品中。自动化程度高、产品质量好、可大规模工业化,适合大型磷肥企业,走肥盐结合道路。市场前景分析:磷酸二氢钾广泛应用于现代化工、农牧业、医药、食品、石油、造纸、日化等行业。目前国内磷酸二氢钾产品的年需求量约在100万吨上下,而出口量约15万吨,总需求量约在110万吨,从2008年至2012年平均23.45 %的高速增长率体现了其巨大市场前景。与同类成果相比的优势分析:产品磷酸二氢钾为无色四方晶体或白色结晶性粉末。KH2PO4含量为92 % - 98 %,相对密度2.338,熔点252.6 °C,易溶于水,1 %的磷酸二氢钾溶液的pH值为4.6。国际先进。
四川大学 2021-04-10
甲醇水液相重整制氢与燃料电池的联用
针对水和甲醇液相制氢反应的特点,采用 铂-碳化钼双功能催化剂 (其中铂以原子水平分散于立方相碳化钼纳米颗粒表面),在 低温下(150~190 ℃)无需强碱即可实现对水和甲醇的高效活化和催化重整 。在190 °C时,催化速率高达18,046 mol H2 /(mol Pt *h),活性较传统铂基催化剂提升了两个数量级。首先比较了立方相碳化钼(α-MoC)和六方相碳化钼(β-Mo 2 C)在载体碳化钼中的不同比例对负载金属铂的结构和甲醇水液相重整制氢活性的影响。实验发现随着载体中立方相结构α-MoC比例的增长,甲醇重整活性急剧增加,Pt负载于纯α-MoC上(Pt/α-MoC)表现出了最高的甲醇重整活性。利用X-射线吸收精细结构谱和单原子分辨率的球差校正电镜对催化剂进行系统研究表征,证明在2 wt% Pt/α-MoC催化剂上存在着高密度原子级分散的铂。将Pt负载量降至0.2 wt%时,可实现所有负载金属铂呈原子级分散,极大提高了贵金属铂的原子利用率,TOF达到了18,046  mol H2 /(mol Pt *h) 。据估算,仅需含有6克金属铂的催化剂即可使产氢速率达到1 kg H2 /h,已基本达到商用车载燃料电池组的需求。而且,Pt/α-MoC具有较高的催化稳定性,经历了11次模拟类真实情况的“启动-停止-启动”循环反应仍维持原子级分散形貌和较高的催化活性。
北京大学 2021-04-11
化学链制氢技术
1.痛点问题 在“双碳”背景下,我国氢气需求量预期会持续增长。目前我国氢气年产量约为3,300万吨,预计2030年增至3,715万吨,2060年增至约1.3亿吨,产业链年产值约12万亿元。 然而,传统制氢路线难以实现碳排放和经济性的平衡。目前全球96%以上的氢气来自于传统化石燃料(“灰氢”),虽然成本较低,但碳排放量巨大;利用化石燃料制氢的同时进行CCUS可获得“蓝氢”,但受制于CCUS技术发展,总体成本较高;利用可再生能源制造的“绿氢”规避了碳排放问题,是氢能发展的最终归宿,但目前在技术、模式、成本等方面都需要进一步探索和发展。 2.解决方案 化学链制氢是一种新兴绿色制氢技术,以金属基载氧体为中介,借助电子和氧的晶格内迁移,将燃料的氧化还原反应解构为还原、蒸汽氧化、空气氧化三个阶段,在不同阶段分别产出纯H2和CO2。 王伟教授团队基于此构建了“生物质废物制取负炭绿氢工艺”“可燃垃圾/工业固废制取蓝氢工艺”“钢铁灰渣高值资源利用耦合原位产氢氢冶炼工艺”等工艺系统,为市政和传统工业行业提供经济可行的“脱碳”路径。 合作需求 1)产业引导基金支持 2)人才政策 3)中试场地和配套水电气及燃气支持 4)实验室/研发中心建设资金支持 5)税收减免优惠 6)厂房代建 7)九通一平以及相关管道线路等基础设施建设 8)用电,气,水保障以及电价,燃气价等支持 9)企业早期发展以及申报高新企业等支持 10)能耗申请支持 11)环评等资质申请的支持 12)配资支持 13)当地其他同类企业相匹配的优惠政策
清华大学 2022-06-21
自控式水解制氢装置
本实用新型涉及一种水解制氢装置,具体为自控式水解制氢装置,反应仓与储液仓之间通过气体连通管连通,储液仓有流量控制阀,上阀座位于储液仓顶部,下阀座位于反应仓与储液仓之间隔板上;上阀座顶部有上阀盖,上阀座底部有弹簧座,塑料软管分别与上阀座顶端、弹簧座密封连接,塑料软管内的圆柱螺旋弹簧卡在弹簧座与上阀盖之间;阀杆下端固定在弹簧座的上表面,阀杆上端穿过上阀盖的限位孔;弹簧座的下表面依次连接联杆、活塞,活塞位于下阀座腔内,下阀座的侧壁上有漏液口。该装置利用圆柱螺旋弹簧弹力和装置内外压力差带动活塞移动,调节漏液口有效大小来控制液态反应物的流量,从而维持产氢速度和氢气压力,达到即时自控目的。
四川大学 2021-04-11
制氢和副产二氧化碳的水煤浆电解工艺
上海交通大学 2021-04-11
可再生能源电解水制氢催化剂制备及其应用
在“双碳”目标的背景下,基于可再生能源电解水制氢是真正实现清洁氢气来源的“绿氢”技术。然而,目前制约电解水制氢产业发展的瓶颈之一是贵金属基电催化剂高昂的价格。近年来,研究者开发了多种廉价、高效的电解水阴极析氢非贵金属电催化剂,其中硫化钼(MoS2)基催化剂是迄今为止发现的析氢性能最好的非贵金属催化剂之一,其具有类铂活性。然而,这类高活性催化剂往往更易受到复杂催化反应环境因素的影响,导致催化剂表面发生重构并破坏其几何/电子结构,造成催化剂失活。 基于此,本团队提出了具有分子选择性的栅栏工程,解决了高活性Co掺杂MoS2析氢反应催化剂活性与稳定性之间的权衡问题。这一策略为设计高效、稳定的非贵金属基电催化剂的大规模应用提供了新思路。当将该MoS2基(Co-MoS2@CoS2)阴极催化材料与实验室自制的高活性钴镍双金属硒化物析氧反应阳极配对用于实验室自制的碱性电解水(AWE)双电极电解系统时,在电流密度400 mA/cm2下持续分解500 h没有明显的衰减。 随着我国进一步推进去碳化,电解水制氢有望成为能源变革的核心。在此背景下,只有大力推广电解水制氢,才能满足不断增长的绿氢需求。为此,需要大幅扩大电解水制氢装置规模,让电解水制氢在国民经济去碳化中发挥关键作用。
北京理工大学 2022-09-16
循环氢脱硫工艺与装置
循环氢脱硫溶剂发泡,引起胺液跑损,夹带的分散相提高了循环氢的分子量,增加了循环氢压缩机的能耗,降低了氢气的纯度,缩短了催化剂的使用寿命和反应的效率。针对我国石油炼制行业原料油含硫量逐渐提高,循环氢气夹带重烃升高的趋势,提出并首先实现循环氢旋流脱烃、脱硫方法,发明预旋流脱重烃的循环氢气脱硫新工艺:采取预旋脱烃方法控制脱硫剂发泡、降低循环氢压缩机工质的分子量;采取后旋脱胺方法回收“跑损”胺液、降低胺液微粒危害。该工艺,在脱硫塔前设置了循环氢分烃设备,有效地脱出其中的液相组成,从源头上、根本上解决了循环氢带液的问题;在脱硫塔增加旋流分离器组,控制循环氢带液量,节约能源,部长环氢压缩机长周期连续稳定运转。该工艺可推广应用到炼油厂加氢裂化、催化裂化、焦化、重整以及催化裂解等装置产生的循环氢、液态烃、柴油和低分气的脱硫系统,以及含硫污水净化系统,还可以推广到由油田伴生气、天然气、水煤气合成等加工过程附产的液化气和燃料气的脱硫系统。本项目研究成果及衍生成果已申请了11件中国专利。其中,中国发明专利9件,授权中国发明专利3件和实用新型专利2件,负责编写国家标准1件(GB/TXXX-XX 液-液分离旋流器技术条件.计划编号:20079030-T-606)。目前拟再申请国家发明专利3件。
华东理工大学 2021-04-11
1 2 3 4 5 6
  • ...
  • 110 111 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1