高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
关于超精细颗粒物检测的应用研究
当颗粒物尺寸进入纳米尺度量级时,其极低的极化率使得实现高灵敏度的快速便捷检测变得困难重重。基于光学方法的传感技术具有非物理接触、非破坏、抗电磁干扰、易于操作且灵敏度高等特点,成为高灵敏传感研究的热门方向之一。传统光纤传感器已经在高灵敏检测领域得到了广泛应用。近年来的研究表明:当光纤直径减小至光波长量级时,光纤外部存在显著的倏逝场,其尺度大约在百纳米量级,对周围环境的微弱变化极为敏感。研究团队利用颗粒物在纳米光纤倏逝场中的散射效应,实现了超细颗粒物的传感与尺寸分布测量。 该项工作中,课题组首先计算了散射效率与散射体尺寸和光纤直径的关系,预测了纳米光纤传感器的最优尺寸和探测极限;随后根据理论预测,进行了高灵敏度的纳米光纤阵列的设计和制备,利用串联的纳米光纤大大提高了传感器的传感面积和检测效率;通过优化光纤模式,研究人员实现了单个标准聚苯乙烯纳米颗粒的传感和测量,粒径分辨率达10纳米。 进一步,考虑到空气中百纳米尺寸级别的细颗粒物的穿透性更强,对于人体具有更大的危害(如图1),而公开的细颗粒物质量浓度数据(PM2.5)无法对此进行有效评价,实时快速测量细颗粒物的粒径分布信息对于空气质量的评价更具有指导作用。课题组利用光纤传感器对2015年和2016年北京冬季大气细颗粒物进行了持续监测,直接获得了百纳米尺度细颗粒物的粒径分布信息,计算得到的细颗粒物浓度数据与官方公布数据趋势符合良好(如图2),充分展示了此成果的应用价值。图2. 基于纳米光纤的大气质量监测。a,空气颗粒物粒径分布及其实时演化;b,空气颗粒物质量浓度(PM1.0)及官方数据(PM2.5)。空气样品实时采集于北京大学物理学院院内。
北京大学 2021-04-11
3/2偶数分母量子霍尔平台的实验观测
从理论物理学家安德森“more is different”的观点提出以来,人们越来越多地意识到多体系统中可以出现丰富的、与单个粒子性质不同的新物理规律。在二维自由电子系统中,大量相互作用的二维电子构成一个强关联体系。在特定条件下,系统哈密顿算符中的电子间长程库伦相互作用主导了系统的物理性质。这是一个无参数的理论问题,也是一个无法微扰处理的问题。多体问题的复杂和有趣在这里体现得淋漓尽致:携带单位电荷的一群电子可以产生携带小于单位电荷的准粒子。 极低温强磁场中的超高迁移率二维电子气可以出现分数量子霍尔效应。奇数分母的分数量子霍尔态有唯一的基态:复合费米子的整数量子霍尔效应或复合玻色子的玻色爱因斯坦凝聚。单层二维电子气中填充因子为5/2的分数态是罕有的偶数分母态的例子,它可能对应了p波配对的复合费米子,拥有拓扑保护的多简并基态波函数,其准粒子可能服从非阿贝尔统计。5/2态是第一个被认为可以用于拓扑量子计算的实验体系。3/2填充因子处,原有的实验结果和理论框架支持复合费米子海的解释,即不存在3/2分数态,也不应该存在分数量子霍尔平台。图:不同门电压条件下的磁场依赖关系,随着门电压改变局域条件,5/3的量子霍尔平台逐渐演变为令人意外的3/2平台。[Nature Communications 10, 4351 (2019)] 量子材料科学中心于2016年观测到了3/2偶数分母分数量子霍尔平台,该工作于2017年10月投稿,2019年9月26日在线发表于《自然.通讯》(https://doi.org/10.1038/s41467-019-12245-y)。林熙课题组的付海龙(2017年毕业,现为Penn State University校级荣誉Eberly Research Fellow)为此现象的观测者,二维电子气样品由普林斯顿大学L. N. Pfeiffer提供。实验发现,3/2平台的量子化程度高达0.02%,只在二维电子气被局域的特定条件下出现,这意味着带合适边界条件的多体体系可能有与无边界条件时不一样的量子态存在。 当局域结构中形成3/2平台时,局域结构外是5/3分数态,所以1/6量子电导被反射了。1/6的量子电导不属于通常理论框架下的任何边界态,所以它的出现可能预示着新的边界态以及新的准粒子的出现。量子中心的谢心澄老师和他的学生吴宜家对此给出理论分析,提出隧穿强度的变化在局域结构附近引起拓扑相变,从而导致分数电荷的再次量子化。5/3分数态的准粒子携带的电荷是e/3,1/6电导的出现可能是5/3态的准粒子继续1/2量子化的结果,所以理论预言了一个携带e/6分数电荷的新激发。
北京大学 2021-04-11
关于发布科技人才激励政策十五条的通知
为全面贯彻落实中央和自治区党委人才工作会议精神,构建更加开放的科技人才引育新格局,全面优化科技人才创新创业环境,激发科技人才创新创业活力,特梳理汇总了科技人才相关激励政策如下。
内蒙古自治区科学技术厅 2022-06-16
沈富可:高校数字化转型的实现路径
高校数字化转型的过程是一个将信息技术与高校教育教学、管理深度融合的过程,是一个重新设计在物理空间、数字空间两个空间如何同步办学的过程,这是一个非常复杂的系统工程,涉及到学校的方方面面,技术上需要高校自己的团队来设计实现基础数据和服务交互平台,提供可信的数据采集、分析工具和数据共享标准规范,为学校其他职能部门、院系的“业务转型”提供技术支持。
中国高等教育学会 2023-01-10
关于申请2023年度科技创新券的通知
为推进技术创新体系建设,促进技术转移转化,鼓励产学研合作,根据《贵州省科技厅权责事项运行规定》及其它相关规定,现就申请2023年度贵州省科技创新券的有关事项通知如下
省科学技术厅成果处 2023-08-11
反式钙钛矿太阳能电池的研究
随着环境问题的日益加剧,太阳能以其清洁、可再生的优势引起了科研界和产业界的广泛关注。其中,高效、经济的光伏技术也成为了当前学术研究和产业发展的热点之一。近年来,一种新型光伏技术——钙钛矿太阳能电池以其易制备、低成本和高效率的特点走入人们的视野,成为新型光伏技术的新宠。短短七年之内,钙钛矿太阳能电池的光电转换效率实现了跨越增长,从最初的3.8%提升至现在的22%以上,表现出了极大的优势和潜力。 钙钛矿太阳能电池分为正式(n-i-p)和反式(p-i-n)两种结构。常规的正式器件通常需要致密或介孔氧化物作为电子传输层,其制备工艺相对复杂,且与柔性基底的兼容性不好。相比较而言,反式结构器件因制备工艺简单、可低温成膜、无明显回滞效应等优点受到越来越多的关注,但是其光电转换效率还稍显不足。
北京大学 2021-04-11
炼化企业氢气的梯级利用分析与系统集成
近年来,随着市场对油品质量要求的提高和原油质量的下降,国内炼化企业对加氢工艺逐步重视。对油品的深加工已从原有的脱碳型逐步转向加氢型,加氢工艺逐渐已经成为主流的深加工工艺。企业内氢气资源的供需矛盾日益突出。随着氢气资源的紧张和价格的攀升,采用先进的优化技术对炼化企业的氢气系统进行优化,最大限度地合理利用氢气资源已经成为提高企业效益,节能降耗的重要途径之一。 本项目目的在于为炼化企业氢气系统提供系统分析和优化集成的方案。根据用氢装置实际需求的氢气压力和氢气纯度确定和设置氢气梯级分配网络的中间等级,提高氢气分配网络的可拓展性和操作柔性,使氢气分配网络中局部用氢装置的增减和操作变动不改变氢气分配网络的整体结构和操作特性。
西安交通大学 2021-04-11
先进复杂反应堆的中子学计算新技术
在方法研究的基础上开发了相应的计算程序,并融入本团队所开发的一系列 专用计算软件中,通过工程应用计算,体现出创新成果的工程应用价值。研究成果获授权发明专利 13 项,软件著作权 24 项;在国际权威期刊发表 SCI 论文 74 篇。本团队针对先进复杂核反应堆堆芯物理设计的难点,经过近 17 年的系统研究和 500 多人/年的持续攻关,提出了一系列原创性数值分析理论, 发明了一系列中子学计算新技术,研发了 24 个具有自主知识产权的反应堆堆芯 物理设计计算软件,实现了对多种先进复杂反应堆的精确三维中子学模拟,并成 功应用于多个重大核能开发及国防军工项目。
西安交通大学 2021-04-11
基于硅酸盐正极的高安全储能电池
(1)技术创新性和领先性:舍弃传统以可溶性盐路线,采用氧化物为原料,实现材料可控 合成。 (2)技术成熟度:采用固相法,适合大规模生产 (3)市场及效益分析:原料价格低廉,产品附加值高 (4)合作条件:对方提供资金、设备、场地,我方提供人员、技术,成果按贡献分享。 
西安交通大学 2021-04-11
关于铜催化生物正交断键反应的研究
利用 外源化学 手段 实现 生物大分子的功能 调控 ,一直以来都是化学生物学 的重要研究方向之一。陈鹏课题组长期致力于 “ 活细胞上的化学 反应 ” 的开发与应用 , 提出 并发展 了 “ 生物正交断键反应( Bioorthogonal  c leavage reaction ) ”  这一 新反应类型 ,突破了在活体内研究蛋白质功能的技术瓶颈,实现了一系列原始创新 ( Nat. Chem.   2014,  6 , 352-61 ;  Nat. Chem. Biol.  2016,  12 , 129-37 ;   Nature  201 9,   569 , 509-13 ) 。
北京大学 2021-04-11
首页 上一页 1 2
  • ...
  • 991 992 993
  • ...
  • 999 1000 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1