高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
城市面源污染控制及雨水资源化利用技术
中试阶段/n该成果涉及一种面源污染治理及屋面径流分流收集利用装置。它包括滤网,管线和集水装置。特征是:所述的凸形滤网连接雨落管,雨落管的末端连接软管,软管的末端连接分流管,分流管位于储水器的中央,溢流管设置在储水器上部外壁上,第一分流阀位于储水器的一侧下方,凸形滤网位于屋檐天沟的落水口,储水器位于凸形滤网的下方,其安装位置与凸形滤网1形成位差。凹形滤网设置在竖管的上端,分流口位于竖管的上部外侧壁上,卡座位于分流口的下方,设置在竖管的内壁上,卡座下方至横管连接处的竖管内设有浮方,其外形为圆柱形,直径略小于竖管。竖管底端固定在混凝土底座上,底座设置在储水器中央底部,横管紧贴底座,横管末端设置有第二分流阀。
华中农业大学 2021-04-11
有色金属矿山重金属污染资源治理剂
酸性矿坑水主要是由于金属硫化矿在空气、水和微生物等的作用下,发生溶浸、氧化、水解等一系列物理化学反应而形成。目前,酸性矿坑水的污染已经成为全世界最为严重的环境问题之一,酸性矿坑水具有极低的 pH(pH≤2.0)和高浓度的重金属离子,因此会对矿区周围的生态环境造成严重的污染。本项目涉及一系列能够抑制嗜酸性氧化亚铁硫杆菌生物膜形成的化合物,该化合物在不影响嗜酸性氧化亚铁硫杆菌正常生长的情况下,可以抑制该菌生物膜的形成,从而降低了嗜酸性氧化亚铁硫杆菌对硫化矿的侵蚀速度,显著降低了硫化矿区酸性重金属矿坑水的
兰州大学 2021-01-12
低成本无污染纺织品物理功能化技术
项目采用现代物理加工技术(磁控沉积)和连续卷绕加工方法生产具有抗静 电、防辐射、抑菌、自清洁等复合功能的纺织材料,项目致力于解决传统功能化 整理对环境的污染和对人体造成的伤害等问题,项目提出使用卷绕式溅射技术, 实现功能纳米粒子在纺织材料表面动态沉积,从而实现纺织材料的功能化。 2 关键技术 项目围绕物理沉积技术的产业化加工技术展开研究并形成科研成果,以卷绕 式溅射设备的设计和功能纺织品的结构构建等为主要研究内容,重点攻克了卷绕 式纺织材料溅射设备的张力控制、在线监测、温度控制等关键技术,在提高功能 效果的同时降低了成本消耗。 3 知识产权及项目获奖情况 授权专利:一种以无纺织布为基底制备柔性电路的方法(专利号 : 200710023298.8) 4 项目成熟度 小批量生产阶段 5 投资期望及应用情况 效益分析(资金需求总额 200 万元) 应用情况:江苏菲特滤料有限公司,宿迁神龙家纺有限公司 
江南大学 2021-04-13
零污染车用空调CO2涡旋压缩机
热泵空调是提升电动汽车冬季续航里程的重要技术途径,本团队近十年来围绕车用热泵空调关键技术,系统深入开展了热泵空调整机及关键设备的性能实验与理论研究工作。分别设计并发展了电动汽车HFCs和CO2热泵空调系统,揭示了循环关键运行参数对热泵空调制冷制热性能的影响规律,并提出了热泵空调冷暖双模式车室温度控制及高效运行控制策略,发展了基于冷凝器出口过冷度的节流阀模糊控制策略,设计了实现CO2热泵空调系统压缩机自动精确调速的模糊控制器。 基于在车用热泵空调技术方面积累的雄厚理论基础以及丰富设计经验,以突破车用CO2热泵空调系统关键技术瓶颈、发展CO2热泵空调系统及设备核心技术为目标,本项目设计研发了零污染高效高可靠性车用空调CO2涡旋式压缩机。针对CO2近临界区剧烈物性变化、高循环压力以及大压差工作环境引起的压缩机性能及可靠性下降、泄漏及摩擦损失升高等问题,基于流动控制技术,创新性提出了降低非对称性流动效应的吸气结构设计方法,发展了考虑过压缩效应的齿头修正设计方法,提出了具有高可靠性的涡旋齿结构及齿顶气动密封技术。
北京理工大学 2023-05-10
城市面源污染控制及雨水资源化利用技术
中试阶段/n该成果涉及一种面源污染治理及屋面径流分流收集利用装置。它包括滤网,管线和集水装置。特征是:所述的凸形滤网连接雨落管,雨落管的末端连接软管,软管的末端连接分流管,分流管位于储水器的中央,溢流管设置在储水器上部外壁上,第一分流阀位于储水器的一侧下方,凸形滤网位于屋檐天沟的落水口,储水器位于凸形滤网的下方,其安装位置与凸形滤网1形成位差。凹形滤网设置在竖管的上端,分流口位于竖管的上部外侧壁上,卡座位于分流口的下方,设置在竖管的内壁上,卡座下方至横管连接处的竖管内设有浮方,其外形为圆柱形,直径略
华中农业大学 2021-01-12
揭示大气污染与糖尿病呈现正相关
研究表明,暴露于PM1,PM2.5,PM10,SO2,NO2和O3可能会对葡萄糖升高产生不利影响,包括葡萄糖和胰岛素浓度升高,从而增加中国糖尿病的发病风险。此外,年轻人和超重或肥胖者可能更容易受到空气污染的致糖尿病影响。与其他中等收入国家一样,由于高空气污染与中国的糖尿病大流行并存,研究结果对公共卫生具有重要意义。
中山大学 2021-04-13
SC-18854台式油液污染度测定仪
仪器概述   本仪器是我司根据GB/T18854(ISO11171-1999)等国家及国际标准设计制造的用于油液中污染粒子等级检测的仪器。采用独特先进的光阻(遮光)法计数原理研制,广泛应用于航空、航天、电力、石油、化工、交通、港口、冶金、机械、汽车制造等领域中液压油、润滑油、抗燃油、汽轮机油(透平油)、齿轮油、发动机油、航空煤油、绝缘油和透平油等颗粒污染度的检测及对有机液体、聚合物溶液进行不溶性颗粒的检测提供快速、准确、可靠、可重复的检测结果及完整的污染监测分析报告,是广大实验室油液分析、液压设备和日常维护的验收、系统的清洁验证、部件的清洁验证、液压部件磨损测试的高效油液分析仪器的首选。 技术参数 1、电  源:AC220V 50Hz 2、光源:半导体激光器 2、测量范围:0.8μm~600μm(取决于选定的传感器) 3、测量通道:8通道,粒径任意设定 4、取样体积:(0.2~1000)ml 5、取样速度:5ml/min~80ml/min 6、分辨率:<10% 7、重合误差极限:10000粒/ml 8、气压舱最大正压:0.8Mpa 9、气压舱最大负压:0.08Mpa 10、数据输出:内置打印机及RS232接 11、重 量:30kg 性能特点 1、采用国际液压标准委员会制定的光阻(遮光)法计数原理 2、采用先进的高压注射泵与正压结合的进样系统,进样速度稳定,取样精度高 3、可自行设定取样体积,方便检测及支持自定义标准测试 4、内置四大常用标准GJB-420B、NAS1638、ISO4406和ГOCT17216-71及两条标定曲线,兼容所有国内外标准 5、全彩色触摸屏操作,无需外接电脑和打印机,自动存储数据,内置打印机,操作简单方便 6、采用瓶取样方式,压力范围宽,可对不同粘度的检品测试 网址链接 http://www.csscyq.com/proshow.asp?id=815  
长沙思辰仪器科技有限公司 2021-12-21
Visual MODFLOW三维地下水流动与污染
产品详细介绍请登录 中国科学软件网 了解更多Visual Modflow软件信息和报价。Visual MODFLOW Flex 2015.1新功能2015年6月发布对MODFLOW-NWT的支持MODFLOW-NWT是MODFLOW的增强版本,提高非承压地下水问题的解决方案再湿润的干电池通常发生的地方。这个版本的MODFLOW是我理想的排水模拟,或任何其他场景单元。精确的细胞赋值和编辑容易分配水力特性和不活跃的细胞数值绘制折线或多边形网格,或选择单个网格细胞。边界条件可以很容易地复制到其他层内数值模型。更容易的定义抽水井提高抽油井可视化灵活的处理时间序列数据先进的粒子跟踪选项Cell-by-cell可视化基于美国地调局 MODFLOW的地下水模拟行业标准软件 Visual MODFLOW软件能够模拟地下水与地表水的相互作用,以及计算地下水化学特征变化的附加功能,为地下水专业人员提供了一套应对水质、供水与水源保护所必需的工具。MODFLOW 引擎:MODFLOW:2000,2005,NWT: 用于地下水流动模拟的国际标准软件MODFLOW-LGR:区域尺度模拟的共享节点的局部网格细化MODPATH:标准软件包,用于追踪正向和反向粒子轨迹NGO:决定一个井或多个井中最佳的泵和注射速率,当保持合理的系统反响时所能达到的特定目标Zone Budget:用于计算子区域的水量平衡运移软件包MT3DMS:三维运移模型可用于模拟平流、扩散、和溶解成分的化学反应MT3D99:MT3DMS的增强版,包括支持隐式求解器、TVD解决方案、双重孔隙介质的对流扩散、非平衡吸附和Monod动力学和多组分反应,包括一阶亲属关系链反应以及各组分之间的瞬时反应。SEAWAT V.4 :三维变密度地下水流多种溶质与热传耦合RT3D:模拟反应运移PHT3D:饱和多孔介质中三维反应运移的多组分运移模型。耦合了2个已有的模型,并广泛应用于计算机程序中,如溶质运移模型MT3DMS和USGS地球化学源码PHREEQC-2。参数估计和灵敏度分析PEST v.12.3: 试验点支持自动校准和敏感性分析。扩展模块MODFLOW-SURFAC:三维有限差可变饱和流或土壤气相流模拟工具(仅支持流动模拟)。应用领域评价地下水安全供水量评价地下水修复系统优化灌溉抽水量圈划水源保护区模拟自然降解过程确定风险评估的暴露途径确定含水层存储和恢复的可能性计算矿坑涌水的影响预测海水入侵造成的影响
北京天演融智软件有限公司 2021-08-23
中国储蓄率变化对全球二氧化碳排放的影响
北京师范大学环境学院梁赛教授课题组研究成果在国际刊物Nature Communications以研究论文(Research Article)形式在线发表。该研究分析了中国储蓄率变化对全球CO2排放的影响,研究表明中国储蓄率下降所导致的最终需求结构变化会减少全球CO2排放。 近年来,中国经济增长模式发生转变,经济转入高质量发展,投资驱动型的经济增长模式正在发生变化。由于资本收益率下降、居民消费习惯的变化、以及政府主导的投资增速下降等原因,中国的储蓄率有所下降,导致最终需求中投资品的比例下降、消费品的比例上升。由于中国是世界上最大的CO2排放国,同时也是世界第二大经济体,中国储蓄率变化所导致的最终需求结构变化最终会引致全球CO2排放总量和结构的变化。研究这一问题有助于更加清晰地理解中国的CO2排放达峰路径和制定更为精准的减排政策。 基于历史数据的结构分解分析结果显示,从2007年到2012年,中国储蓄率的变化解释了1.89亿吨全球生产活动CO2排放。基于中国储蓄率会持续下降的预测,进一步的情景分析显示,若中国的储蓄率下降15个百分点,全球CO2排放会减少1.86亿吨,占全球生产活动CO2排放的0.7%。中国储蓄率降低会对全球各国的CO2排放产生不同影响。主要位于中国资本品生产供应链上的国家的CO2排放将有所减少,例如美国、日本、韩国等国家。而主要位于中国消费品生产供应链上的国家的CO2排放则会有所增加,例如巴西等国家。此外,在中国极限绿色消费的情景下,因储蓄率变化所导致的全球生产活动CO2排放可进一步降低14%。 中国各区域储蓄率下降的效果也有所差异,主要是由于各区域不同的资本形成结构、最终消费结构、以及各部门的累计CO2排放强度(含直接和间接CO2排放强度)。例如,山东省储蓄率下降导致全球CO2排放减少的量最大,主要由于山东省在资本形成中占比比较高的部门(如建筑和机械制造)的累计CO2排放强度高于其在最终消费中占比比较高的部门(如其他服务业和食品制造业)。与之相反,内蒙古自治区储蓄率下降会导致全球CO2排放的增加,尤其表现在内蒙古电力行业累计CO2排放强度较高、且电力行业在最终消费中占比较高。 这项研究认为,中国的增长方式转变通过降低储蓄率的方式对全球CO2减排做出积极贡献。同时,在消费率上升的大背景下,为早日实现CO2排放达峰目标,中国应进一步促进绿色消费和消费品全产业链的节能减排。
北京师范大学 2021-02-01
中国储蓄率变化对全球二氧化碳排放的影响
北京师范大学环境学院梁赛教授课题组研究成果在国际刊物Nature Communications以研究论文(Research Article)形式在线发表。该研究分析了中国储蓄率变化对全球CO2排放的影响,研究表明中国储蓄率下降所导致的最终需求结构变化会减少全球CO2排放。 近年来,中国经济增长模式发生转变,经济转入高质量发展,投资驱动型的经济增长模式正在发生变化。由于资本收益率下降、居民消费习惯的变化、以及政府主导的投资增速下降等原因,中国的储蓄率有所下降,导致最终需求中投资品的比例下降、消费品的比例上升。由于中国是世界上最大的CO2排放国,同时也是世界第二大经济体,中国储蓄率变化所导致的最终需求结构变化最终会引致全球CO2排放总量和结构的变化。研究这一问题有助于更加清晰地理解中国的CO2排放达峰路径和制定更为精准的减排政策。 基于历史数据的结构分解分析结果显示,从2007年到2012年,中国储蓄率的变化解释了1.89亿吨全球生产活动CO2排放。基于中国储蓄率会持续下降的预测,进一步的情景分析显示,若中国的储蓄率下降15个百分点,全球CO2排放会减少1.86亿吨,占全球生产活动CO2排放的0.7%。中国储蓄率降低会对全球各国的CO2排放产生不同影响。主要位于中国资本品生产供应链上的国家的CO2排放将有所减少,例如美国、日本、韩国等国家。而主要位于中国消费品生产供应链上的国家的CO2排放则会有所增加,例如巴西等国家。此外,在中国极限绿色消费的情景下,因储蓄率变化所导致的全球生产活动CO2排放可进一步降低14%。 中国各区域储蓄率下降的效果也有所差异,主要是由于各区域不同的资本形成结构、最终消费结构、以及各部门的累计CO2排放强度(含直接和间接CO2排放强度)。例如,山东省储蓄率下降导致全球CO2排放减少的量最大,主要由于山东省在资本形成中占比比较高的部门(如建筑和机械制造)的累计CO2排放强度高于其在最终消费中占比比较高的部门(如其他服务业和食品制造业)。与之相反,内蒙古自治区储蓄率下降会导致全球CO2排放的增加,尤其表现在内蒙古电力行业累计CO2排放强度较高、且电力行业在最终消费中占比较高。 这项研究认为,中国的增长方式转变通过降低储蓄率的方式对全球CO2减排做出积极贡献。同时,在消费率上升的大背景下,为早日实现CO2排放达峰目标,中国应进一步促进绿色消费和消费品全产业链的节能减排。
北京师范大学 2021-04-10
首页 上一页 1 2
  • ...
  • 21 22 23
  • ...
  • 555 556 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1