高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
PiSADN污水高效低成本深度脱氮技术
PiSADN污水高效低成本深度脱氮技术是国内外首次提出的污水高效低成本深度脱氮解决方案 一、项目分类 关键核心技术突破 二、成果简介 到2020年底,全国大部分新建污水处理厂和敏感区域污水处理厂均已经提标到一级A标准。由于我国的城市污水C/N比普遍偏低,难以满足脱氮要求。当前污水处理厂主要采用投加有机碳源的方式强化反硝化脱氮,为此大大增加了成本。为解决此问题,近年来学术界、工业界致力于寻找化学碳源以外的替代性电子供体以实现低成本的污水脱氮,其中,硫自养反硝化技术是重点关注对象。 基于S0的自养反硝化工艺(SADN)是一种新兴的低成本污水脱氮技术。但S0的溶解度低导致它的生物可利用性差,因而限制了SADN的速率而阻碍工艺的推广应用。本技术研究创新发现,揭示了SADN中加入少量有机碳除促进SADN反应速率的机理,并丰富了有机物投加条件下的多种不同硫形态电子供体或有机物电子供体的反硝化路径。此外,进一步研究发现通过在SADN体系自发形成多硫化物(Sn2-),其生物可利用性远高于S0。Sn2-一旦产生,可迅速被硫氧化反硝化菌利用,实现污水中硝氮的快速还原。这一通过多硫化物介导并加速硫自养反硝化的技术,称为PiSADN反应过程(Polysulfide-involved SADN),是国内外首次提出的污水高效低成本深度脱氮解决方案。 目前本技术已经申请了1个国家发明专利,已发表2篇SCI学术论文,其中一篇发表在环境领域顶级期刊Water Research上,因此,本技术具有先进性和独占性。
中山大学 2022-08-15
环保型水处理剂聚天冬氨酸(PASP)的研制
目前国内外工业用水处理中对金属材料设备结垢和腐蚀的缓蚀剂和阻垢剂,大部分系含磷(或膦)的药剂,由于排放后对周围水体易引起富营养化。国内外排放水总磷要求小于1mg/L,在这一背景下急需研发不含磷(或膦)的水处理剂。而聚天冬氨酸PASP就是近年来国内外公认的符合环保要求的绿色水处理剂。本项目合成制备采用的原料全部为国产的环保型原料,和国内外其他制备方法不同,采用了单体本体热聚合的一步反应工艺技术,具有创新性,该工艺具有反应时间短,不涉及投加其他化学品等优点,产品不仅可应用于工业水如工业冷却水的阻垢和防腐蚀,由于抑制水垢和腐蚀可提高传热效率并防止跑冒滴漏而取得显著的节能减排效果,经拓展研究后发现应用于农作物,先后对蔬菜类,如青菜、花菜,瓜果类,如西瓜、甜瓜,以及粮油作物等均可取得以下三方面的增效作用:1)促进农作物营养的吸收而提高农作物的产量,不同作物品种可提高5%-15%左右。2)改善了作物的品质,如西瓜的甜度可由原先的10-12%提高到15-16%。3)对肥料起到增效作用,可减少化肥的用量,有利于改善土壤和环境。
华东理工大学 2021-04-11
可再生循环使用的酸性废水处理剂及其制备
Ø 本项目涉及一种可再生循环使用的工业酸性废水处理剂及其制备方法,该酸性废水处理剂是以镁铝水滑石为前体经焙烧得到的镁铝复合金属氧化物,利用水滑石材料的结构记忆效应达到处理酸性废水的目的。本发明制备工艺简单,处理酸性废水效果好,并且处理剂使用后经过焙烧可多次再生重复使用。解决了现有技术中工艺复杂、处理剂用量大及不能重复使用等问题。
北京理工大学 2021-01-12
乳化液、胶化废水等 COD 含量很高的废水处理
上海理工大学 2021-01-12
高性能热法聚偏氟乙烯(PVDF)平板水处理膜开发
项目背景:1.随着动力电池能量密度的不断提升,对电池安 全性的要求也越来越高。隔膜作为锂离子电池的重要组成部分之 一,可提供锂离子传输通道,并且防止正、负极接触发生短路, 对锂离子电池的安全性具有非常重要的影响。油性聚偏氟乙烯 (PVDF)主要由韩国 LG 等电池企业把控技术,国内受制于工艺 不完善、配套设备跟不上等问题,始终无法实现突破。研发具有 优异电化学性能、安全性高的 PVDF 膜是国内提高电池安全性能 的重要途径之一。2.目前国内外企业如旭化成、陶氏、GE、北京 碧水源、天津膜天等主要采用等非溶剂致相分离制备聚偏氟乙烯 中空纤维膜,应用于净水处理及污水处理领域中,但市场上尚未 发现有热致相分离法制备聚偏氟乙烯平板一体膜产品。本项目已 对聚偏氟乙烯原材料、溶剂体系进行初步筛选,进行了不同制备 工艺的对比实验,得到不同性能的聚偏氟乙烯平板一体膜,具备 一定的研发基础。 所需技术需求简要描述:1.采用热致相分离方法加工聚偏氟 乙烯(PVDF)材料,通过对原材料体系、溶剂体系、加工工艺的 筛选优化,通过开发配套的热法工艺设备,制备出具有高孔隙率、 高均匀性的微孔一体膜。2.提供微相分离、破膜温度、高倍率隔 膜微观孔结构的检测、电池安全性能检测,为转化生产提供各项数据的技术支持。  对技术提供方的要求:拥有一定的研发基础和实验的技术团 队和科研单位,相关研究成果处于国内领先水平。 
青岛中科华联新材料股份有限公司 2021-09-03
用工业生产氧氯化锆废渣制备高效水处理剂
成果与项目的背景及主要用途:当今社会能源消耗大、环境恶化的问题日益严重,如何合理地利用资源实现可持续性发展是我国乃至全世界所关注地焦点。随着科学技术的进步,环境恶化问题日益严重,水资源的问题更加突出。为了人类社会的可持续发展,必须开发先进的水处理技术。为了解决这些问题,我们采用工业生产氧氯化锆后的废渣进行改性、煅烧等技术处理后制备出一种高效、环保、可重复利用的水处理剂,应用表明,其对污水中的油、重金属离子等都有很强的吸附净化能力,可广泛应用于水体净化领域。 技术原理与工艺流程简介:本项目对工业生产氧氯化锆后的废渣进行改性、煅烧等技术处理后,通过控制合成工艺,制备出高效的水处理剂,实现了废物资源再利用和可持续发展的战略。该产品外观呈白色,有块状、球形,平均粒径为3μm 左右,比表面积 300-400m2/g,对污水中的油分、重金属离子(镉离子、镍离子、铬离子等)都有很强的吸附净化能力(油分的吸附容量 150mg/g;重金属离子的吸附量 250mg/g)。 技术水平及专利与获奖情况:该产品已经进行了中试,同时该技术得到中国石油天然气总公司基金的资助。 应用前景分析及效益预测:环保材料是二十一世纪最具发展潜力的新材料技术之一。该水处理可以广泛用于油田采出水的油水分离过程、中水处理和水处理等领域,市场前景广阔。该技术生产 1 吨水处理剂成本为 2000 元,而市场售价为 6500 元,可见经济效益比较显著。 应用领域:可广泛应用于油田采出水的油水分离、絮凝剂、中水处理、生物医药等领域。 技术转化条件(包括:原料、设备、厂房面积的要求及投资规模):年产 50吨水处理剂需投资 100 万元,其中固定资产投资需要 80 万,流动资金需要 20万。 合作方式及条件:该技术已经通过中试,适合产业化,可以采取合作或技术转让的方式进行。
天津大学 2021-04-11
处理重金属工业污水的高效经济的新型电化学设备
近些年来,在我国经济高速发展的同时,环境污染问题也日益严重。涉及众多工业领域(如矿冶、机械制造、化工、电子、电镀、仪表等)的重金属废水(如含氟、氰、铬、汞等废水)是对环境污染最严重和对人类危害最大的工业废水。但由于不同的工业产生的重金属污染源多种多样,重金属废水的体系十分复杂,很难找到一种适用于所有重金属废水体系的处理方法;另外,目前最常用的重金属废水的化学处理法由于需要再次添加化学药剂(如混/絮凝剂、重金属沉淀剂(如钙盐、钡盐等)),不仅使处理成本大幅提高,同时存在对环境二次再污染的可能以及产生的含重金属污泥难以处理等诸多问题,因此,经济、高效且可持续的重金属废水的处理方法一直是我国这些年的研究热点。 和传统的化学处理法相比,应用电化学方法治理工业废水,具有无需添加氧化剂、絮凝剂等化学药品、设备体积小、占地面积小、操作简单灵活、排污量小等优点,不仅可用于处理无机污染物,也可用于处理有机污染物,特别是一些无法用生物降解的有毒有机物。另外,用电还原法处理一些重金属时还可回收废水中的金属。因此电化学方法越来越多的被用于重金属废水的处理中。用于重金属废水处理的电化学方法包括电解法(氧化或还原)、电气俘法、电凝聚法和电渗析法等。基本原理是在外电压的作用下,利用可溶性阳极(通常为铁或铝阳极)产生的阳离子在溶液中水解、聚合生成一系列既具有絮凝作用、又能有效吸附水中的有机污染物及其他胶体物质的聚合物。另外,在外加电压下,另一边的阴极(如铝阴极)可同时产生气体(如氢气、氧气、氯气等),气体的微小气泡又可起到气浮或杀菌的作用(如图1所示),更加提高废水的处理效果。
西安交通大学 2021-04-11
*上SAR实时处理技术(技术)
成果简介:项目针对*上SAR处理体积、重量、功耗、辐照、强实时等严格约束条件,构建了模块化、可扩展、可重构、可容错的XZ并行实时处理系统体系结构;基于XZ并行实时处理系统体系结构,研制了基于DSP、ASIC和FPGA等多种处理器异构并行的硬件平台,解决了多种处理器之间处理、传输、存储效率平衡的关键技术;在硬件平台上开发了*上SAR成像处理、溢油检测、洪涝区域检测等实时处理高可靠软件;为研制了*上SAR成像处理专用ASIC芯片,完成XZSAR系统实时成像处理中运算密集型的运算,从而满足系统实时性要求
北京理工大学 2021-04-14
铁水预处理脱硫技术
铁水预处理技术从上个世纪六、七十年代发展起来到现在已经广泛地应用于提高铁水质量,发展铁水应用范围的新的工艺。其技术也在不断的发展和完善,目前世界范围内的铁水预处理技术不下二、三十种。北京科技大学郭汉杰教授的研究室经过多年研究,已开发成熟世界上最先进的两种铁水预处理脱硫工艺方法,即 (1)机械搅拌法,即在日本广泛流传的KR法,已经过改进,进入一个新的阶段; (2)喷吹法,铁水罐顶喷纯化镁脱硫,形成了具有自主知识产权的技术工艺。 喷吹法采用具有较高精度的脱硫剂喷吹量的控制模型(可选择的和可即时调控的),提高了镁的利用率,降低喷粉生产成本,同时达到目标硫数值。设备采用高技术喷射器系统;带气化室的喷枪;PLC全程程控和计算机操作等。 搅拌法我们也根据其自身的弱点开展了多年的攻关,解决了搅拌头的寿命和铁水温降大的问题。同时搅拌法在使用中还开发了以CaO为主要原料作为脱硫剂,达到了最佳的脱硫指标,同时研究了石灰的活性度和颗粒度的最佳要求。从目前已经投产处理效果看,使用这种廉价且效果良好的脱硫剂,搅拌法亦可以很容易地实现深脱硫的效果。 关于两种方法的特点: 喷吹冶金在冶炼生产过程的应用非常广泛,采用喷吹的办法将脱硫剂加入到铁水中进行脱硫,显然是可行的,而且也很容易为人们所接受。然而由于喷吹法不能获得很好的动力学条件,因此,要想获得好的脱硫效果,就必须选用好的脱硫剂。否则无法实现深脱硫,而且脱硫效率低,效果不稳定。北京科技大学经过多年的研究已经很好地解决了这个问题。为了解决好动力学条件的问题,侧重开发使用更具脱硫效率的脱硫剂,经过多次实验研究,我们选择在线单吹或混合镁粉复合喷吹法,况且重点研究了镁粒的粒度、铁水温度和铁水液面高度对脱硫动力学的影响,已在国内外核心刊物发表论文5篇,在企业取得了很好的效果。搅拌法在脱硫过程中的动力学条件得到了根本性的改善,而且还可以用CaO完全替代CaC2取得非常好的脱硫效果,从而省去了使用碳化钙的危险性。传统的搅拌法的缺点是搅拌头的寿命低,铁水温降大,这两个问题,都已得到很好的解决,特别是铁水温降问题,通过对脱硫机理和脱硫剂的改进,我们可以把温降控制在15度范围内,这一指标很可能是世界先进水平。两种工艺方法都有各自的优点,企业可以根据自身的条件选择。目前我们在两种方法都有很好的业绩,与北京冶金设备研究院合作,有20余套设备在国内企业运行或在建。
北京科技大学 2021-04-13
铁水预处理脱硫技术
铁水预处理技术从上个世纪六、七十年代发展起来到现在已经广泛地应用于提高铁水质量,发展铁水应用范围的新的工艺。其技术也在不断的发展和完善,目前世界范围内的铁水预处理技术不下二、三十种。北京科技大学郭汉杰教授的研究室经过多年研究,已开发成熟世界上最先进的两种铁水预处理脱硫工艺方法,即(1)机械搅拌法,即在日本广泛流传的 KR 法,已经过改进,进入一个新的阶段;(2)喷吹法,铁水罐顶喷纯化镁脱硫,形成了具有自主知识产权的技术工艺。喷吹法采用具有较高精度的脱硫剂喷吹量的控制模型(可选择的和可即时调控的),提高了镁的利用率,降低喷粉生产成本,同时达到目标硫数值。设备采用高技术喷射器系统;带气化室的喷枪;PLC 全程程控和计算机操作等。搅拌法我们也根据其自身的弱点开展了多年的攻关,解决了搅拌头的寿命和铁水温降大的问题。同时搅拌法在使用中还开发了以 CaO 为主要原料作为脱硫剂,达到了最佳的脱硫指标,同时研究了石灰的活性度和颗粒度的最佳要求。从目前已经投产处理效果看,使用这种廉价且效果良好的脱硫剂,搅拌法亦可以很容易地实现深脱硫的效果。关于两种方法的特点:喷吹冶金在冶炼生产过程的应用非常广泛,采用喷吹的办法将脱硫剂加入到铁水中进行脱硫,显然是可行的,而且也很容易为人们所接受。然而由于喷吹法不能获得很好的动力学条件,因此,要想获得好的脱硫效果,就必须选用好的脱硫剂。否则无法实现深脱硫,而且脱硫效率低,效果不稳定。北京科技大学经过多年的研究已经很好地解决了这个问题。为了解决好动力学条件的问题,侧重开发使用更具脱硫效率的脱硫剂,经过多次实验研究,我们选择在线单吹或混合镁粉复合喷吹法,况且重点研究了镁粒的粒度、铁水温度和铁水液面高度对脱硫动力学的影响,已在国内外核心刊物发表论文 5 篇,在企业取得了很好的效果。搅拌法在脱硫过程中的动力学条件得到了根本性的改善,而且还可以用 CaO 完全替代 CaC2取得非常好的脱硫效果,从而省去了使用碳化钙的危险性。传统的搅拌法的缺点是搅拌头的寿命低,铁水温降大,这两个问题,都已得到很好的解决,特别是铁水温降问题,通过对脱硫机理和脱硫剂的改进,我们可以把温降控制在 15 度范围内,这一指标很可能是世界先进水平。两种工艺方法都有各自的优点,企业可以根据自身的条件选择。目前我们在两种方法都有很好的业绩,与北京冶金设备研究院合作,有 20 余套设备在国内企业运行或在建。
北京科技大学 2021-04-13
首页 上一页 1 2
  • ...
  • 19 20 21
  • ...
  • 719 720 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1