高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
人工智能药物筛选、药物设计及毒性预测算法
本成果采用最新的深度学习和分子模拟算法,结合新一代分子特征化方法,开发了多种计算机模型,可用于药物开发中的多个阶段,为药物的快速设计开发提供一个完整的基于人工智能的解决方案。成果:1.药物毒性预测方法:传统的化合物毒性检测技术一般需要使用生化试验、细胞实验、甚至动物模型,这些方法不仅耗费大量时间,而且成本很高。使用计算模型进行有机化合物的毒性预测,所需投入较少,但产出巨大。特别是基于化合物的物理化学和结构特性的计算模型,甚至能够在化合物合成之前就对其进行预测,大大提高了效率,使其越来越受到欢迎。在进行体外和体内试验之前先使用计算机模型对化合物进行大规模的毒性筛选,能够更好地解决候选药物具有毒性的问题。我们建立了一套新的基于多种分子指纹和机器学习算法的化合物毒性预测集成学习算法,运用此集成学习算法建立了新的有机化合物致癌性、致突变性和肝毒性预测模型。我们分别建立了名为CarcinoPred-EL (http://112.126.70.33/toxicity/CarcinoPred-EL/, 致癌性预测)、MutagenPred-EL (http://112.126.70.33/toxicity/MutagenPred-EL/, 致突变性预测)、LiverToxPred-EL (http://112.126.70.33/toxicity/LiverToxPred-EL/, 肝毒性预测)的预测服务器,这些服务器能够为使用者提供更高效更便捷的预测技术服务。自2017年服务器发表起,我们已为国内外药物分子设计研究者提供了5000多次共计超过20多万个化合物的毒性预测服务。在有机化合物毒性预测研究方向,我们主要完成了化合物的细胞毒性、心脏毒性、生殖毒性、血脑屏障透过性、水生生物毒性预测模型,以及糖尿病早期筛查模型的开发,正在进行P450酶阻滞剂性预测模型、基于图神经网络的毒性预测算法研究、基于分子对接的化合物毒性预测研究等。相关研究成果已发表多篇学术论文(Zhang L., et al. Scientific Reports, 2017, 7: 2118. WOS被引次数80,ESI 1%高被引论文;Ai H., et al. Toxicological Sciences, 2018, 165: 100-107;Yin Z., et al. Journal of Applied Toxicology. 2019, 39(10): 1366-1377;Ai H., et al. Ecotoxicology and Environmental Safety. 2019, 179: 71-78;Liu M., et al. Toxicology Letters. 2020, 332: 88-96;Feng H., et al. Toxicology Letters. 2021, 340: 4-14;Li S. et al. Interdisciplinary Sciences: Computational Life Sciences. 2021, 13: 25-33.)致癌性预测服务器首页致癌性预测结果页相关综述对本服务器的介绍RF-hERG-Score预测药物引起的hERG相关心脏毒性2.药物设计方法:在计算机上对药物靶点和药物分子的结构和活性建模,计算药物与靶点之间的相互作用关系,从而设计出具有治疗作用的药物。计算机辅助药物设计可以为药物设计各阶段的实验方案提供有意义的指导,减少需要通过实验评估的候选药物的数量,从而加快新药研发速度。我们应用分子对接、分子动力学模拟、自由能计算、机器学习等方法研究流感病毒等重要疾病的计算机辅助药物设计、并开发更有效的计算机辅助药物设计方法。在计算机辅助药物设计研究我们主要完成了流感病毒M2质子通道蛋白抑制剂虚拟筛选方法研究,正在进行先导化合物生成模型研究、基于机器学习的虚拟筛选打分函数算法开发、SARS-CoV-2病毒S蛋白与受体相互作用及药物设计研究。特异性重打分函数显著虚拟筛选性能显著较高筛选出两个候选抑制剂3.药物靶点识别方法:长非编码RNA(lncRNA)是一种长度在200nt至100,000nt之间的非编码RNA,是转录物的主要成分。研究表明lncRNA在许多生物学和病理学过程中起着重要作用。lncRNA起作用的重要途径是与其靶蛋白结合。lncRNA-蛋白质相互作用的实验研究需要大量资源。累积的实验数据使得通过计算方法预测lncRNA-蛋白质相互作用成为可能。我们使用各种数学建模和机器学习方法开发了几种用于预测lncRNA-蛋白质相互作用的新模型。这些模型命名为:RWLPAP(随机游走),LPI-NRLMF(邻域正则化逻辑矩阵分解),IRWNRLPI(集成随机游走和邻域规则化Logistic矩阵分解),LPI-BNPRA(双向网络投影推荐算法),LPI-ETSLP(基于特征值变换的半监督链路预测),HLPI-Ensemble(集成学习)。在交叉验证中,我们的模型获得了较好的预测性能。lncRNA-蛋白质相互作用预测模型的性能比较lncRNA-蛋白质相互作用预测服务器相关软件著作权:
辽宁大学 2021-04-10
人工智能药物筛选、药物设计及毒性预测算法
本成果采用最新的深度学习和分子模拟算法,结合新一代分子特征化方法,开发了多种计算机模型,可用于药物开发中的多个阶段,为药物的快速设计开发提供一个完整的基于人工智能的解决方案。 成果:1.药物毒性预测方法:传统的化合物毒性检测技术一般需要使用生化试验、细胞实验、甚至动物模型,这些方法不仅耗费大量时间,而且成本很高。使用计算模型进行有机化合物的毒性预测,所需投入较少,但产出巨大。特别是基于化合物的物理化学和结构特性的计算模型,甚至能够在化合物合成之前就对其进行预测,大大提高了效率,使其越来越受到欢迎。在进行体外和体内试验之前先使用计算机模型对化合物进行大规模的毒性筛选,能够更好地解决候选药物具有毒性的问题。我们建立了一套新的基于多种分子指纹和机器学习算法的化合物毒性预测集成学习算法,运用此集成学习算法建立了新的有机化合物致癌性、致突变性和肝毒性预测模型。我们分别建立了名为CarcinoPred-EL (http://112.126.70.33/toxicity/CarcinoPred-EL/, 致癌性预测)、MutagenPred-EL (http://112.126.70.33/toxicity/MutagenPred-EL/, 致突变性预测)、LiverToxPred-EL (http://112.126.70.33/toxicity/LiverToxPred-EL/, 肝毒性预测)的预测服务器,这些服务器能够为使用者提供更高效更便捷的预测技术服务。自2017年服务器发表起,我们已为国内外药物分子设计研究者提供了5000多次共计超过20多万个化合物的毒性预测服务。在有机化合物毒性预测研究方向,我们主要完成了化合物的细胞毒性、心脏毒性、生殖毒性、血脑屏障透过性、水生生物毒性预测模型,以及糖尿病早期筛查模型的开发,正在进行P450酶阻滞剂性预测模型、基于图神经网络的毒性预测算法研究、基于分子对接的化合物毒性预测研究等。相关研究成果已发表多篇学术论文(Zhang L., et al. Scientific Reports, 2017, 7: 2118. WOS被引次数80,ESI 1%高被引论文;Ai H., et al. Toxicological Sciences, 2018, 165: 100-107;Yin Z., et al. Journal of Applied Toxicology. 2019, 39(10): 1366-1377;Ai H., et al. Ecotoxicology and Environmental Safety. 2019, 179: 71-78;Liu M., et al. Toxicology Letters. 2020, 332: 88-96;Feng H., et al. Toxicology Letters. 2021, 340: 4-14;Li S. et al. Interdisciplinary Sciences: Computational Life Sciences. 2021, 13: 25-33.) 致癌性预测服务器首页 致癌性预测结果页 相关综述对本服务器的介绍 RF-hERG-Score预测药物引起的hERG相关心脏毒性 2.药物设计方法:在计算机上对药物靶点和药物分子的结构和活性建模,计算药物与靶点之间的相互作用关系,从而设计出具有治疗作用的药物。计算机辅助药物设计可以为药物设计各阶段的实验方案提供有意义的指导,减少需要通过实验评估的候选药物的数量,从而加快新药研发速度。我们应用分子对接、分子动力学模拟、自由能计算、机器学习等方法研究流感病毒等重要疾病的计算机辅助药物设计、并开发更有效的计算机辅助药物设计方法。在计算机辅助药物设计研究我们主要完成了流感病毒M2质子通道蛋白抑制剂虚拟筛选方法研究,正在进行先导化合物生成模型研究、基于机器学习的虚拟筛选打分函数算法开发、SARS-CoV-2病毒S蛋白与受体相互作用及药物设计研究。 特异性重打分函数显著虚拟筛选性能显著较高 筛选出两个候选抑制剂 3.药物靶点识别方法:长非编码RNA(lncRNA)是一种长度在200nt至100,000nt之间的非编码RNA,是转录物的主要成分。研究表明lncRNA在许多生物学和病理学过程中起着重要作用。lncRNA起作用的重要途径是与其靶蛋白结合。lncRNA-蛋白质相互作用的实验研究需要大量资源。累积的实验数据使得通过计算方法预测lncRNA-蛋白质相互作用成为可能。我们使用各种数学建模和机器学习方法开发了几种用于预测lncRNA-蛋白质相互作用的新模型。这些模型命名为:RWLPAP(随机游走),LPI-NRLMF(邻域正则化逻辑矩阵分解),IRWNRLPI(集成随机游走和邻域规则化Logistic矩阵分解),LPI-BNPRA(双向网络投影推荐算法),LPI-ETSLP(基于特征值变换的半监督链路预测),HLPI-Ensemble(集成学习)。在交叉验证中,我们的模型获得了较好的预测性能。 lncRNA-蛋白质相互作用预测模型的性能比较 lncRNA-蛋白质相互作用预测服务器相关软件著作权:
辽宁大学 2021-05-10
基于人工智能算法的电弧放电检测系统
在串联回路中,当电弧或放电现象发生时,对电流进行频谱分析,根据电流 的频谱特征变化来确定是否有电弧发生,提供预警信息或保护动作。为了防止在 开关的瞬间或受到其他脉冲电流的干扰造成电弧故障检测电路误动作,同时在频谱分析的基础上综合电弧时间长短等其他特性作为电弧故障的判据。系统的硬件 部分包含电流检测、滤波、故障特征提取等模块。软件部分包含信号采集、信号 处理、故障判别等模块,并综合时间等其他因素降低误报率,提高检测系统的可 靠性。在算法中,采用了人工智能算法以提高系统的适应性。主要成果包
上海理工大学 2021-01-12
锂电池管理系统AI算法研究
本项目聚焦于锂电池管理系统在智能化监测与预测中的关键痛点,尤其拟面向电池容量衰减预测、SOC/SOH估计不准、电池剩余时间不准确、MAP/SOP估算等方面。通过引入人工智能算法,构建融合机器学习与深度学习的电池状态预测模型,拟实现高精度SOC(荷电状态)与SOH(健康状态)估计的优化,提升电池管理系统的智能水平与安全性。 解决方案方面,项目基于实地检测磷酸铁锂电池充放电数据构建训练集,采用轻量级线性回归模型及改进型人工神经网络进行建模优化,并结合特征工程技术提高预测精度。同时,设计适用于边缘计算的部署方案,使模型可在BMS嵌入式硬件平台实时运行,降低对计算资源的依赖。 在竞争优势方面,项目成果具备算法轻量化、部署便捷、预测准确度高、兼容性强等特点,特别适用于电力储能、电动汽车等对安全性和可靠性要求高的场景。相比传统BMS方案,该AI算法可显著提升电池使用效率与寿命,精准估算SOC/SOH,降低维护成本。 目前项目成果已在合作企业内部储能设备中开展应用测试,初步反馈表明荷电状态预测准确度提升40%左右,电池健康度准确度提升40%左右,系统响应及时,具备较高实用性和推广价值。专家评审一致认为,该项目在智能电池管理系统方向具有较强的创新性和实际应用前景。
西南大学 2025-05-12
汽车动力转向器计算机辅助测试(CAT)系统
技术特点:采用通用微机为控制核心,采用应变式测力原理对液压油压力和手力扭矩进行监测,实现转向器手力特性的自动测量、状态和图形的动态显示,指示调整余量及调整方向,数据及特性曲线的自动记录输出,有储存和再处理功能,并可对多台CAT系统实现网络化集中管理。 主要指标:为消除环境温度及油温对测量结果的影响,系统具有温度自动检测及补偿修正功能,提高了测量精度。针对工厂现场干扰源多、环境条件十分恶劣的现状,研究出了专用的高抗干扰专用接口和电源供电系统。整个系统采用汉字菜单,中文人机对话,调整指示显示。采用数字滤波和样条曲线拟合的方法,编制了数据处理软件。
大连理工大学 2021-04-13
基于智能环境感知的车辆安全辅助驾驶系统
该项目主要应用于车辆安全辅助驾驶领域,可以在车辆有危险趋势时及时向驾驶员提供警告信息,减少或避免可能发生的交通事故,也可以应用于车辆的辅助驾驶和智能自动导航领域。该项目利用灰度图像中道路边缘处存在的灰度特征、梯度特征作为识别道路的特征,运用群智能算法实现对道路边界的快速识别,最终得到车辆行驶道路信息。根据道路识别结果,利用前方车辆在图像中底部边缘存在灰度特征、方差特征和梯度特征,运用鱼群算法实现对前方多车的快速识别。项目采用转向动力学连续模型,车辆前轮转角和道路曲率作为系统输入,根据系统的采样频率将连续模型离散化,运用Kalman滤波理论设计状态观察器,实时观测前方车辆侧向速度和横摆角速度,从而获得车辆运动轨迹,为安全辅助驾驶系统提供准确信息。     该项目对车辆安全辅助驾驶系统提供信息的频率在5Hz之内。在复杂情况下通过使用本项目研究的系统进行车道识别,其准确率大于95%。该项技术于2009年初成功应用于新疆冰雪灾害防护系统的养护车辆智能辅助驾驶系统中,该系统由北京中交国通智能交通系统技术有限公司负责建设,采用该技术大大提高了复杂冰雪环境下道路识别和前方车辆识别的可靠性和实时性,同时增强了在不同光照等复杂环境下的适应性。该技术应用后,有利于避免和减少道路交通事故发生的可能性,保障车辆行驶安全,取得了良好的社会效益。
燕山大学 2021-05-04
新型冠状病毒肺炎智能辅助诊断系统
新冠肺炎疑似病例基数庞大,给临床一线诊疗带来巨大压力,疫情波及地域广泛,基层医院缺乏经验,面临严峻挑战。由清华大学精密仪器系尤政院士、临床医学院董家鸿院士领导研发的新型冠状病毒肺炎智能辅助诊断系统成功通过应用测试,进入临床试用阶段,有望为上述难题提供解决方案。新型冠状病毒肺炎智能辅助诊断系统董家鸿介绍,新型冠状病毒肺炎智能辅助诊断系统可同步实现智能化影像诊断、临床诊断及临床分型三大功能。该系统包括三大模块,其中影像诊断模块主要基于对新型冠状病毒肺炎初诊病例的珍贵临床资料的大数据分析,使用人工智能算法深度学习该疾病的CT影像特征,实现对新型冠状病毒肺炎影像的智能识别。临床诊断模块则依据卫健委发布的《新型冠状病毒感染的肺炎诊疗方案(试行第五版)》,结合影像与流行病学、症状及关键检验数据等临床信息,实现智能诊断。临床分型模块通过智能判读呼吸功能参数,“自适应”判断新型冠状病毒肺炎的严重程度。董家鸿谈到,该系统可在短时间内完成大量疑似病例的胸部CT筛查、依据指南进行临床与影像相结合的综合分析,显著提升新型冠状病毒肺炎诊断效能,有望大幅降低临床医师及影像医师的工作负荷。
清华大学 2021-04-10
新冠肺炎影像学AI智能辅助诊断研究
“现阶段医生需要在大量影像数据中快速诊断出新冠肺炎的病例,此外还需要诊断出病灶分布的位置、大小等来评估严重程度。”薛向阳介绍,针对临床的现实需求,团队将设计目标定位于“肺炎分类鉴别”和“关键病灶检测”两大功能,前者是为区别健康状态、新冠肺炎、其他病毒性肺炎、细菌性肺炎,后者则为找到并分隔出磨玻璃影等病灶区域。针对这些需求,团队设计诊断算法模型,让机器利用模型进行训练,学习不同类型肺炎在CT影像表现上的不同特征,最终具备智能辅助诊断的能力。而这需要突破小样本学习、小目标检测等多个技术难题。“小样本学习”即在较少训练数据样本的条件下进行机器学习。在疫情发生前期,能够获取的新冠肺炎影像数据相对较少,且由于一线影像医生任务繁重,无法获得大量专家标注,因此需要算法在少量样本的条件下“自学成才”。为此,团队采用基于自迁移学习的半监督学习等技巧,使算法具备一定的“小样本学习”能力,在不增加医生标注工作量的情况下较好地提高了算法模型的普适性。由于CT影像切片中的病灶区域有大有小,且往往大中小病灶区域面积悬殊,如何使算法能同时检测大、中、小各个目标是另一大难题。团队利用神经网络的层次性特点与病灶区域的大小进行对应,“网络的底层关注细节,即小病灶区域,而网络中层到高层所关注的病灶区域则越来越大,因此模型通过不同层次的加权和融合,最终便能达到同时检测大小病灶区域的目标。”薛向阳解释道。“不过,即便有诊断‘神器’,影像科医生也是不可替代的。”薛向阳说,人是复杂的机体,病毒在不同人体内感染的反映也不一定相同。”他表示,当遇到机器未曾学习过的微小病变或疑难病例时,仍需要影像医生的经验和智慧。以解决实际问题为目标,该项目在研究过程中始终与临床应用紧密结合。无论是机器学习数据,还是测试评估数据,都来源于临床真实病例。在算法模型定型过程中,为了检验模型的准确率和泛化性,团队也利用现实疑似病例进行了测试。
复旦大学 2021-04-10
白内障病变智能检测与分级辅助诊断技术
本研究为信息技术与医学的有效交叉与深度融合,将计算机视觉与人工智能技术无缝介入白内障诊疗过程的各个阶段:从健康筛查、识别病变、分级判断并推荐治疗方案,到最后判断治疗完成后的病患改善程度等,可完美解决白内障诊断及相关医疗服务所面临的高强度、低准确度和供给失衡的问题,实现多种类型白内障图像的智能检测与分级辅助诊断系统,具有高性能、高鲁棒性等优势,并可推广至其他多种AI医疗图像领域。本课题组与四川省人民医院有多年合作关系,可将该系统全面覆盖西部地区从省、地、市到县等多级不同条件的医疗机构,同时不断丰富病症表观多样性和扩大图像数据规模,为研究的深入开展及性能的提高完善创造更为有利的条件。
电子科技大学 2021-04-10
一种温控型智能辅助供液系统
本发明公开了一种温控型智能辅助供液系统,包括设有入口管和出口管的装置主体,包括:设置在装置主体内的弹性输液管以及挤压在弹性输液管外壁的挤压杆,该弹性输液管两端分别与入口管和出口管对应导通;驱动挤压杆转动的驱动机构,所述挤压杆转动时能够驱使弹性输液管内液体从入口管向出口管流动;用于检测待输送液体温度的温度传感器;接收的所述温度传感器的温度信号,根据温度信号大小对所述驱动机构进行控制,实现对挤压杆转速的控制。本发明具有结构简单,工作可靠,能够智能控制血液流动,流量稳定,流量调节范围大,产生血压高,外形尺寸小,能植入到动物体内,具有良好的生物兼容性等特点。
浙江大学 2021-04-13
首页 上一页 1 2 3 4 5 6
  • ...
  • 252 253 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1