高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
摇摆式啤酒盖用高分子密封材料研发
项目背景:摇摆式啤酒密封盖是高端啤酒的标配如弗林博 格、百威等欧美高端啤酒产品,国内高端啤酒瓶盖市场规模已达 十亿人民币左右。目前,应用于高端啤酒密封盖的高分子密封材 料及其成型技术仍被德国等欧美厂家所垄断,相关瓶盖密封产品 严重依赖进口,且供应量有限,严重制约了国内高端啤酒产品的 发展。 所需技术需求简要描述:1.开发应用于摇摆式高端啤酒封盖 的高分子密封材料配方,解决瓶盖中密封件和瓶塞件及瓶体等部 分材料间的相容性和匹配性难题;2.对摇摆式啤酒瓶密封盖进行 相关蜜粉机械结构的优化设计、制造工艺的研究,实现瓶盖一体 化注塑成型;研制质量检测系统(密封性等)装置,为实现业化 工摇摆式啤酒瓶密封盖奠定基础。3.满足食品安全的国标要求, 不含易迁移的溶剂和小分子添加剂,进一步满足美国 FDA 认证要 求:水蒸气透过系数< 1*10-4 g.cm(cm2.s.Pa)-1,酒精透过系 数<1*10-4 g.cm(cm2.s.Pa)-1,透气系数<1*10-17m2s-1Pa。  对技术提供方的要求:1.具备啤酒盖密封的高分子材料研发 能力和经验,已在高分子材料领域取得国内领先的研究成果; 2.具有相关密封结构和检测实力研发队伍。 
青岛金恒智造科技有限公司 2021-09-03
新型密封材料及装备的设计制造与性能表征
新型无石棉短纤维增强橡胶基密封复合材料制备技术:本项目制备开发的短纤维增强NAFC材料具有耐高温(300摄氏度)、低蠕变、高强度、低成本的特点,且其制备工艺单,基本沿用了传统CAF材料的生产设备,产品技术指标完全满足国家标准对NAFC材料性能的要求,且某些指标已经超过了国外同类进口产品。 非石棉密封复合材料生产技术:本项目所开发产品的技术指标包括压缩回弹率、泄漏率、应力松弛率、外观质量等均符合国标规定的要求,其使用性能达到甚至超过国外知名企业同类产品的性能指标,可替代国外进口产品。 密封件及其防松弛元件生产技术及装备:项目团队已开发出密封元件分级制造新技术以及工艺参数可控制的国内最先进的静密封件生产装备,包括新型缠绕机、金属包复垫滚压成型机、石墨复合垫剪圆及包边机等。采用上述技术和装备可生产出满足不同工况条件的高质量静密封产品。此外,项目团队开发了高温连接用防松弛技术及其相应的元件,可提供成熟的产品设计和制造技术。
南京工业大学 2021-01-12
螺栓法兰密封接头用高温碟簧设计与制造技术
碟簧作为一种弹性补偿元件,被引入螺栓法兰连接系统,可有效地解决因诸多因素引起的法兰接头的螺栓预紧力松弛问题。当螺栓拧紧时,碟簧吸收机械能并将其转化成弹性势能储存起来,当法兰接头由于温度变化、压力波动、机械振动或自身各元件的蠕变导致螺栓预紧力或螺栓力松弛时,碟簧将释放其储存的弹性势能转化成机械能,对螺栓预紧力或螺栓力进行补偿,从而使螺栓力始终保持在垫片密封所需要的区间范围内,保证法兰接头长周期紧密不漏。本成果基于PVRC泄漏紧密性等级,考虑法兰、螺栓、垫片及碟簧的变形协调,对碟簧结构进行优化设计,并通过材料、加工及热处理工艺的深入研究,为石化、炼油、电力、核能、冶金等领域的高温高压或温度压力波动的螺栓法兰接头提供高品质的密封辅助元件。
南京工业大学 2021-01-12
厚壁无缝钢管超声波自动探伤系统
成果描述:小径厚壁无缝钢管的超声波探伤技术是当今世界难点之一,在超声波探伤过程中由于周围环境的影响,干扰信号的屏蔽也是难点之一,本系统在这两个世界级难点都给出了可行的解决方案与工艺标准。 本系统采用多通道双探头,可一次性实现钢管的周向、纵向的缺陷检测。工作模式采用探头固定静止,钢管在水箱中螺旋前进,这种方式可以实现钢管的连续自动探伤。该超声波探伤系统结构合理、灵敏度高、检测结果满足厂方要求,在钢管质量检测中发挥着重要作用。 该系统主要由四部分组成:①、机械传动部分,②、控制部分,③、超声波系统,④、软件系统。 ①、机械传动部分包括自动送料、出料机构,同步带与齿轮传动机构,摩擦轮传动机构。 ②、控制部分的核心是PLC,主要控制电机的运转包括正转、反转、点动、停止和急停,及控制声光报警、喷标系统、水泵开启与关闭。 ③、超声波探伤系统主要由超声波脉冲发射卡、数据采集卡、A/D转换卡、探头组成。 ④、软件系统主要的功能模块包括:回波采集及预处理模块、缺陷诊断模块、回波显示模块、PLC控制模块、报表生成模块等。采用VC++实现对板卡采集的回波数据进行滤波处理,并将回波数据以波形图显示在工控机的软件界面。缺陷诊断模块对回波数据经过算法计算与标准伤的阀值进行比较从而判定回波是否存在缺陷波,若发现缺陷,则启动进行声光报警及喷标程序,并将缺陷波形数据自动存储到系统数据库。报表生成模块可以管理本批次钢管缺陷记录,或是按月或其他条件生成报表。PLC控制模块主要是通过上位机与下位机的通信,实现对电机的运转、喷标报警、水泵的控制。 该超声波探伤系统主要实现厚壁无缝钢管的全自动探伤检测、智能判伤、监控、数据保存和报表输出一体化操作。市场前景分析:金属材料在高温、高压、高载荷的情况下,内部已有的缺点可能被放大,造成不可估量的经济损失,据估算,我国每年由于不合格产品的经济损失达到2000亿元。并且超声波有很高的缺陷辨识能力。因此,超声波无缝钢管超声波探伤系统的市场需求很大。与同类成果相比的优势分析:1、相比以往厂方委托其他单位检测无缝钢管,既提高了检测效率,又降低了成本。按照厂方提供的每年要送外检测15-20吨的样品的预算,只此一项可节约检测成本约30万元。 2、相比国外同类产品的每套200多万人民币的检测系统,该超声波检测系统既能满足厂方的高检测要求,又价格低廉。 国内领先。
四川大学 2021-04-11
移动互联网未知应用自动识别系统
本技术成果克服了现有技术的不足,提供了一种对未知 应用(包括恶意软件)进行自动发现、自动聚类、自动分析、自动识别的技术
中山大学 2021-04-10
钢轮毂焊缝缺陷X射线自动识别系统
该系统可对钢轮毂中的焊缝缺陷进行自动识别和判断,并对缺陷大小进行自动统计,从而自动判断是否合格。其控制软件具有图像采集、数据通信、数据及工艺文件存储、合格不合格统计及数据库查询、图像的自动处理与模式识别、加密、打印及帮助等功能。
北京交通大学 2021-04-13
大型贮灰坝自动监测与安全预警系统
鉴于电厂贮灰坝坝体安全的重要性,对贮灰坝进行自动监测是现代管理的需要,同时与当代高新科技发展相适应,建立先进的计算机监测系统。 本系统的主要作用在于:1、建立电厂贮灰坝坝体渗流、变形(长期)自动监测系统;2、实现电厂、电管局的远距离监控;3、实现对监测坝体稳定的实时分析和安全预警。 系统监测内容:1、贮灰坝浸润线的位置;2、贮灰坝运行期的沉降和水平变位。 系统运行方式:1、现场监测人员的手动巡检;2、电厂监控(拨号或光纤上网)。 监测仪器与设备:监测系统采用的监测仪器以稳定、可靠和耐久为原则,对埋设在坝体内部的监测仪器渗压计和多点变位计,全部选用美国GEOKON(基康)公司产品。 数据采集系统有三个模块:数据采集模块、数据库模块、图形显示模块。数据采集模块可以实时采集数据并可按给定的时间间隔采集数据,数据库模块将采集的数据存储起来,图形显示模块进行形象的显示同时进行安全诊断等。 监测系统组成:监测系统主要由监测仪器系统、数据采集系统、数据管理系统、安全预警系统四部分组成。
大连理工大学 2021-04-13
电磁阀软磁材料性能自动测试系统
磁性是物质的基本属性之一,磁性能测试是研究物质磁性的主要手段。先进的计算机自动测试系统是未来的希望。软磁材料的最大特点是矫顽力小,导磁率大,易被磁化,也容易失掉磁性,但它是应用最广泛的磁性材料。对于软磁材料而言,要想通过纯粹理论的方法来掌握其性能是不可能的。因此,用实验测试的方法来解决研究设计和应用中的一些基本问题,就显得十分重要。该系统可自动测试软件磁材
西安交通大学 2021-01-12
太阳光自动跟踪光热催化-膜分离反应系统
本发明提供一种太阳光自动跟踪光热催化-膜分离反应系统,旨在提供一种高效光热催化反应系统,它包括光热催化反应区、膜分离区、太阳光自动跟踪仪、系统控制区、太阳能发电区。通过曝气混合驱动方式将TiO2催化剂与污染物充分混合,促使混合液循环流动进行光热催化反应。本系统在太阳光自动跟踪仪的带动下能全天候跟踪太阳光,具有很高的光能利用率和传质效率,太阳光自动跟踪仪的设置大大提高了光热催化反应去除污染物的效率,使得光能利用率达到最大化;太阳能发电区所提供的电能能够满足整个系统所需电量,使本系统摆脱外接电源的束缚,
天津城建大学 2021-01-12
基于图像的焦炭光学组织自动识别系统
成果简介通过光度计采集不同偏光下焦炭显微图像, 采用图像处理的方法焦炭提取图像中颜色、 纹理、 分形、 区域及边界等特征, 并采用模式识别的方法, 实现焦炭光学组织的自动分类与识别。成熟程度和所需建设条件硬件平台及软件系统均已构建, 算法已得到实验验证。 作为成熟产品, 软件尚需要进一步优化, 软硬件需要联调。技术指标识别准确率: 各向同性与各向异性>95%, 片状 98%, 纤维状 99%, 镶嵌状>95%。
安徽工业大学 2021-04-14
首页 上一页 1 2
  • ...
  • 51 52 53
  • ...
  • 746 747 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1