高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
聚乙烯基苯磺酸或其盐作为室温磷光材料的应用
本发明涉及有机发光材料技术领域,更具体地,涉及聚乙烯基苯磺酸或其盐作为室温磷光材料的应用。 背景技术: 室温磷光与荧光相比具有特殊的延时特性,一方面,可避免短寿命的荧光和散射光的干扰,另一方面,特殊的延时特性可以作为一种特定的防伪信号,具有难以模仿的防伪性能。 然而现存的无机室温磷光材料在应用方面存在一定的限制,如稀土长余辉材料,由于其室温磷光寿命过长、难加工成型,使其在防伪方面难以发挥作用。而大多数有机室温磷光材料存在难合成、难加工、加工过程污染大的问题。大量的室温磷光材料都含有重金属、卤原子,不仅污染大、毒性高、不易加工而且价格昂贵,合成危险且难度高。 同时有机磷光材料的三重态对温度和氧气极其敏感,传统观念认为对有机化合物而言,磷光只能在低温、无氧条件下获得,极大的限制了其在各类领域的应用。因此,如何基于商品化的水溶性聚合物材料,合理设计开发出高效的、成本低、易加工成型的无卤、可水性印刷的室温磷光聚合物材料在理论和应用研究方面都具有重要的研究意义和价值。目前已有部分有机磷光材料的报道,例如专利201610563059.0,其是将磷光单体和荧光聚合在一起形成具有磷光和荧光性质的聚合物。同样,专利201610428357.9公开了带有卤素的化合物制备的具有磷光性质的聚合物。虽然已有部分有机磷光材料的报道,但是实际可应用的材料较少,仍然存在极大的研究空间,有待于进一步的开发和研究。 技术实现要素: 本发明的目的在于提供聚乙烯基苯磺酸或其盐作为室温磷光材料的应用。本发明首次发现聚乙烯基苯磺酸或其盐具有长寿命室温磷光发光的特性,且为纯有机物,不含有卤素等毒性高的元素,也不含有贵金属,其原料易得、成本低廉,可作为室温磷光材料进行应用。 本发明的第二目的在于提供一种无卤、可水性印刷的室温磷光材料。 本发明的第三目的在于提供所述无卤、可水性印刷的室温磷光材料在作为或制备发光元器件或发光材料中的应用。 本发明的第四目的在于提供所述无卤、可水性印刷的室温磷光材料在制备防伪标志中的应用。 本发明的第五目的在于提供所述无卤、可水性印刷的室温磷光材料在制备可水性印刷发光材料中的应用。
中山大学 2021-02-01
聚乙烯基苯磺酸或其盐作为室温磷光材料的应用
项目成果/简介:本发明涉及有机发光材料技术领域,更具体地,涉及聚乙烯基苯磺酸或其盐作为室温磷光材料的应用。背景技术:室温磷光与荧光相比具有特殊的延时特性,一方面,可避免短寿命的荧光和散射光的干扰,另一方面,特殊的延时特性可以作为一种特定的防伪信号,具有难以模仿的防伪性能。然而现存的无机室温磷光材料在应用方面存在一定的限制,如稀土长余辉材料,由于其室温磷光寿命过长、难加工成型,使其在防伪方面难以发挥作用。而大多数有机室温磷光材料存在难合成、难加工、加工过程污染大的问题。大量的室温磷光材料都含有重金属、卤原子,不仅污染大、毒性高、不易加工而且价格昂贵,合成危险且难度高。同时有机磷光材料的三重态对温度和氧气极其敏感,传统观念认为对有机化合物而言,磷光只能在低温、无氧条件下获得,极大的限制了其在各类领域的应用。因此,如何基于商品化的水溶性聚合物材料,合理设计开发出高效的、成本低、易加工成型的无卤、可水性印刷的室温磷光聚合物材料在理论和应用研究方面都具有重要的研究意义和价值。目前已有部分有机磷光材料的报道,例如专利201610563059.0,其是将磷光单体和荧光聚合在一起形成具有磷光和荧光性质的聚合物。同样,专利201610428357.9公开了带有卤素的化合物制备的具有磷光性质的聚合物。虽然已有部分有机磷光材料的报道,但是实际可应用的材料较少,仍然存在极大的研究空间,有待于进一步的开发和研究。技术实现要素:本发明的目的在于提供聚乙烯基苯磺酸或其盐作为室温磷光材料的应用。本发明首次发现聚乙烯基苯磺酸或其盐具有长寿命室温磷光发光的特性,且为纯有机物,不含有卤素等毒性高的元素,也不含有贵金属,其原料易得、成本低廉,可作为室温磷光材料进行应用。本发明的第二目的在于提供一种无卤、可水性印刷的室温磷光材料。本发明的第三目的在于提供所述无卤、可水性印刷的室温磷光材料在作为或制备发光元器件或发光材料中的应用。本发明的第四目的在于提供所述无卤、可水性印刷的室温磷光材料在制备防伪标志中的应用。本发明的第五目的在于提供所述无卤、可水性印刷的室温磷光材料在制备可水性印刷发光材料中的应用。项目阶段:成果已转化
中山大学 2021-04-10
天津大学发现新型结晶抑制剂,或成为肾结石患者福音
天津大学龚俊波团队与休斯敦大学等开展国际合作,成功发现一种新型结晶抑制剂。该抑制剂可有效抑制诱发尿酸盐结石形成的晶体生长,有望为肾结石患者带来福音。
天津大学 2023-02-07
基于铣削温度预测残余拉应力发生及相应优化控制方法
本发明公开了一种基于铣削温度预测铣削加工过程中残余拉应力发生的方法,该方法包括:将被加工工件表面热源分布简化设定为梯形分布模型,并根据该模型确定被加工工件在铣削加工过程中的表面及亚表面温度 TM;建立被加工工件铣削过程中的温度与残余拉应力之间的映射关系,并计算得出当残余拉应力发生时工件的表面及亚表面临界温度 TC;根据所获得的 TM 和 TC 值之间的比较,来预测铣削过程中是否会发生残余拉应力。本发明还提供了相应的基于铣削温度对铣削加工过程中残余拉应力的方法。通过本发明,能够通过对残余拉应力的多个影响因素进行简化,并有效执行对残余拉应力的预测和控制,相应实现零件的高效低损伤加工。
华中科技大学 2021-04-11
控制全球变暖在1.5 ºC内将限制干旱化的发生
研究发现2 ºC的升温将使全球愈加干旱。如果升温达到2 ºC,全球将有超过四分之一的土地将变得愈加干旱。此变化将大大增加旱灾和山火的威胁。但是如果把全球变暖控制在1.5 ºC内则将大大减少干旱发生地区的范围。此项发表在《自然气候变化》期刊上的研究成果由南方科技大学和东英吉利大学(UEA)共同完成。干旱化通过比较降水与蒸发的关系来衡量地表的干湿程度。研究小组综合评估了27个全球气候模式的预测结果以确定世界范围内干旱化程度将大大改变的区域。预测结果建立在将全球温度升高范围控制在工业化前1.5 ºC和2 ºC水平的基础上。干旱化程度的改变则通过对比其当前的年际变化得到。
南方科技大学 2021-04-13
面向工业废气 VOCs 治理的低温等离子体发生装置
成果简介:面向工业废气 VOCs 治理的低温等离子体产生 装置是工业废气 VOCs 治理的关键装置,该装置能够产生破坏 VOCs 的高能电子、原子氧等活性粒子,对通过低温等离子体 产生装置中的工业废气 VOCs 进行有效分解,特别适合大流量 的工业废气 VOCs 的治理要求。面向工业废气 VOCs 治理的低 温等离子体产生装置包括低温等离子体发生器和高频高压电 源,其中的低温等离子体
合肥工业大学 2021-04-14
一种自振高压脉冲水射流发生器
一种自振高压脉冲水射流发生器,由发生器主体(1)、上喷嘴(2)、下喷嘴(3)、排水管(4)、滑块(5)和 弹簧组成;所述发生器主体(1)为中空的圆柱体,左端开口设与压缩空气管相连,右端中心设有一锥直形 出口(6);所述上喷嘴(2)、下喷嘴(3)、第二弹簧(8B)、滑块(5)和第一弹簧(8A)从左至右依次设置于发生 器主体(1)的内部;第二弹簧(8B)左端与下喷嘴(3)刚性连接,右端与滑块(5)刚性
武汉大学 2021-04-14
更符合人体学的新型静电放电发生器的设计
针对目前国内外的商业静电枪不能体现真实人体的分布特性的局限,本研究成果根据真实人体-手-金属放电的特性,提出了更符合人体学的静电放电发生器的设计方法,在国际国内都属首创。 本研究成果首先采用带宽为3GHz以上的矢量网络分析仪,测试真实场景的人体放电回路的阻抗特性;然后根据人体阻抗特性的测试结果,采用具有分布特性的等效电路模型进行参数拟合,获取建议模型的参数值;根据建议的电路模型和参数值,构建真实的新型静电发生器,能够体现真实人体的静电放电特性。
华北电力大学 2022-07-05
一种旋流流化床固体粒子发生器
本实用新型公开了一种旋流流化床固体粒子发生器,是在主气路中引出旁路气流作为粒子发生器的驱动动力,旁路气流分别通过底部和侧壁切向通孔注入压力容器中,底部注入的气流用于驱动流化床,切向注入的气流可形成旋流增加气流紊乱程度,综合利用流化床和旋流分散干燥的固体粒子,形成气溶胶,从而保证粒子质量,最后通过压力容器上部的气路将气溶胶注入主气路。本实用新型不需要额外的高压气源,不会改变空气或者是燃料气体流量及其相对比例,可以避免增加额外的流量计/流量控制器的使用。利用流化床和旋流结构,可有效提高粒子散布的均匀性,并有效避免流化床中形成稳定气路而失效,该装置结构简单,操作维护方便,投资及维护费用低。
浙江大学 2021-04-13
纳米流体直接吸收式太阳能蒸汽发生装置及方法
本发明公开了一种纳米流体直接吸收式太阳能蒸汽发生装置及方法,将纳米流体直接吸收式太阳能集热与蒸汽发生集为一体,外管采用无涂层的U型真空管(2),U型真空管内设置有套管蒸汽发生管(5),U型真空管与套管蒸汽发生管之间的环形封闭腔内充满纳米流体(4)。蒸发介质在套管蒸汽发生管中吸收纳米流体的热量后汽化成蒸汽流出。套管蒸汽发生管的内管管壁设有喷嘴(7),用于补充液体增大换热系数。本发明利用纳米流体的光吸收特性直接吸收太阳能并产生中温蒸汽,同时强化了蒸发换热传热性能,从根本上避免了传统集热器吸收涂层耐高温和
东南大学 2021-04-14
首页 上一页 1 2
  • ...
  • 78 79 80
  • ...
  • 361 362 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1