高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
后量子密码芯片
作为信息化时代各领域发展的重要基础与保障,信息安全是一个不容忽视的国家安全战略。当今信息安全领域广泛使用的公钥密码体制主要都是基于经典计算机“难以求解”的数学问题所设计构造的。近些年来,随着量子计算技术的快速发展,传统公钥密码体制不再安全。一方面,Shor算法、Grover搜索算法、量子傅里叶变换等算法相继被提出,从理论上证明这些算法在量子计算机上运行可以显著缩短传统公钥密码体制所依赖数学问题的求解时间。另一方面,实际可行的量子计算机技术不断发展,2019年,Google宣布制造出53量子比特的量子处理器“悬铃木”,在绝对零度条件下可以在200秒完成超级计算机1万年的计算任务。在即将到来的“后量子时代”,我们需要更安全的密码体制来保护隐私,也就是后量子密码(Post-QuantumCryptography,PQC)。未来10年商用量子计算机将面世,在量子计算机面前,构造传统公钥密码体制所基于的数学难题将毫无安全性可言,进而依赖密码体制而构建的信息安全系统及各种应用将面临着严峻的安全问题,甚至存在被完全破解的潜在威胁,亟待研究抵御量子攻击的密码体制及其芯片实现技术。 2022年美国政府正式签署安全法案,首次将后量子密码纳入美国国家安全备忘录,同时还提出《量子计算网络安全准备度法案》,旨在指导推动信息安全系统向后量子密码学过渡。2022年9月7日,美国国家安全局(NSA)发布了《商业国家安全算法套件2.0》,其中将入选第三轮抗量子密码标准化选择的CRYSTALS-KYBER(以下简称Kyber)算法列为国家安全系统未来过渡迁移的必备算法。我国也在后量子密码领域积极跟进,参与国际竞争,于2020年发布国内首份量子安全白皮书,广泛布局后量子密码安全技术应用与产业生态。目前后量子密码算法的研究正在逐渐走向成熟与标准化,未来将有数十亿新旧设备完成从传统公钥密码体制向后量子密码算法的迁移过程。在充分考虑安全性能、算法性能、便利性和合规性的前提下,研制出符合国际标准且具有国际竞争力的后量子密码SoC芯片并应用,对于我国加快抢占后量子密码国际领先地位,保障量子时代下的信息安全具有重要意义。 图1 后量子密码在未来信息安全领域的应用 本成果提出一种应用在云计算、数据中心加密中的高性能随机数生成哈希核心算子,实现了具有灵活性和高吞吐量的可配置Keccak核心。该核心可配置为支持多个采样策略,通过高吞吐量随机数扩展发生器新型结构达到11.7Gbps的吞吐率,性能表现为目前世界最高水平。 图2 高性能后量子密码哈希核心算子 在国际上首次提出了具有侧信道SPA攻击防御机制的可配置BS-CDT高斯采样器。该设计基于CDT反演高斯采样算法,通过真随机数发生器和随机化功耗特性的电路结构,采取隐藏相关数据的防御机制,高效获取安全性更好的均匀分布随机数,并可以有效抵御时间攻击和潜在的功耗分析攻击,显著提高安全性。电路采样精度可达112bit,新型多级快速查找表结构极大缩短了概率函数分布表搜索时间,性能相较于同类设计提升近18倍。解决了高精度需求与采样速度不匹配的冲突问题,优化了概率函数分布表的存储资源,灵活划分密码系统中的高斯采样值,并有效加固了后量子密码系统数据前级的侧信道安全性。 图3 多模域计算兼容可重构算术单元 针对后量子密码计算量大,数据复杂的痛难点,优化格数学难题中的数论变换(NTT)算法,实现了一种高性能NTT硬件加速单元。采用双倍位宽乒乓式对称存储结构突破访存限制,改进模乘运算单元关键结构,提高多项式运算的效率,相比同类运算操作下最先进的设计快3.95倍。 图4 灵活指令集型后量子密码安全处理器芯片架构及版图 针对后量子密码算法的多样化计算需求,创新性地提出了一种多模域计算兼容型可重构核心算子,能够配置为不同模域下的关键运算结构,灵活支持Karatsuba、Toeplitz、NTT等运算结构。在配置为NTT结构的运算下,运算性能与美国MIT研究团队在IEEEISSCC发表的相关成果保持国际同步水平,并具备更强的灵活性与通用性。 图5 多模域计算兼容型可重构核心算子 在团队积累多年的后量子密码相关先进技术研究的基础上,在SMIC40nm工艺下实现了两款后量子密码芯片,能够兼容国际最新标准的CRYSTAL-Kyber后量子密码算法。后量子密码Kyber芯片采用了高性能流水线结构的蝶形运算单元及高速NTT运算单元,解决了加解密运算中访问存储器所带来的速度瓶颈问题。灵活指令集型后量子密码芯片采用可编程自定义指令集架构,基于多模域计算兼容的可重构算术单元与可配置多功能哈希/随机采样核心算子,在实现高性能的后量子密码运算的同时提高了芯片的灵活性与适应性。 图6 后量子密码Kyber处理器芯片架构及版图 图7 灵活指令集型后量子密码处理器芯片架构及版图
华中科技大学 2022-09-23
功率芯片封装器件
博志金钻技术团队在磁控溅射领域深耕二十余年,目前已经实现氧化铝、氮化铝、氮化硅、单晶金刚石、单晶碳化硅覆铜板的量产,三英寸陶瓷覆铜板月产能10万片,包括各类种子层方案,铜层厚度0.5-100um,表面无毛刺、划痕、色差等异样,350度加热平台烘烤5分钟不起泡。 一、项目进展 已注册公司运营 二、企业信息 企业名称 苏州博志金钻科技有限责任公司 企业法人 潘远志 注册时间 2022/3/31 注册所在省市 江苏省 苏州市 组织机构代码 91610131MA712U7Q06 经营范围 一般项目:技术服务、技术开发、技术咨询、技术交流、技术转让、技术推广;金属表面处理及热处理加工;新材料技术研发;新材料技术推广服务;电子元器件制造;集成电路制造;信息安全设备制造;通信设备制造;光通信设备制造;雷达及配套设备制造;光电子器件制造;真空镀膜加工;表面功能材料销售;金属基复合材料和陶瓷基复合材料销售;合成材料销售;有色金属合金销售;半导体器件专用设备制造;新型陶瓷材料销售;电子元器件零售;电子元器件批发;泵及真空设备制造;泵及真空设备销售;通用设备制造(不含特种设备制造);玻璃、陶瓷和搪瓷制品生产专用设备制造;电子专用材料研发;电子专用材料制造;特种陶瓷制品销售;半导体器件专用设备销售;集成电路设计;机械设备租赁;租赁服务(不含许可类租赁服务)(除依法须经批准的项目外,凭营业执照依法自主开展经营活动) 企业地址 江苏省 苏州高新区长亭路8号大新科技园3幢二楼 获投资情况 2021/07/01苏州汇伯壹号创业投资合伙企业(有限合伙)天使轮1000万元 2022/03/22苏州融享进取创业投资合伙企业(有限合伙)preA轮2500万元 三、负责人及成员 姓名 学院/所学专业 入学/毕业时间 潘远志 邓敏航 杨添皓 电子与信息学部/自动化 2020/2024 陶佳怡 管理学院/大数据管理 2020/2024 林子涵 电气工程学院/电气工程及其自动化 2020/2024 袁子涵 电气工程学院/电气工程及其自动化 2020/2024 牟国瑜 电气工程学院/电气工程及其自动化 2020/2024 杨志鹏 能源与动力工程学院/强基(核工程与核技术) 2020/2024 田继森 航天航空学院/工程力学 2020/2024 孙浩然 机械工程学院/机械工程 2020/2024 郑力恺 电气工程学院/电气工程及其自动化 2019/2023 王羿淮 管理学院/工商管理 2019/2025 李青卓 材料科学与工程学院/材料科学与工程 2018/2023 四、指导教师 姓名 学院/所学专业 职务/职称 研究方向 宋忠孝 材料学院/材料系 教授、博士生导师 核电领域;电化学、催化、电池领域;器件、封装领域:高温抗氧化烧蚀、高压抗电弧烧蚀领域;轻量化领域硬质涂层领域 王小华 电气学院/电机电器及其控制 教授/博导,国家级人才计划入选者(特聘教授),国家级青年人才计划入选者(青年学者),教育部新世纪优秀人才,陕西省青年科技标兵。西安交通大学未来技术学院/现代产业学院副院长、实践教学中心(工程坊)副主任、教务处副处长、创新创业学院副院长,CIGRE开关设备状态评估工作组成员,中国电工技术学会电器智能化系统及应用专委会委员 开关设备设计、状态监测与寿命评估 田高良 管理学院/会计与财务 教授、博士生导师 财务预警;内部控制与风险管理;资产评估;信用管理等 五、项目简介 苏州博志金钻科技有限责任公司是一家专门从事高功率半导体封装材料研发生产的公司。以先进的陶瓷表面金属化技术为核心形成了包括(1)粉体表面改性;(2)热压烧结;(3)研磨、抛光;(4)陶瓷金属化;(5)增厚、刻蚀;(6)预制金锡焊料;(7)激光切割等环节的完整高端热沉材料生产体系。公司拥有完整的热沉材料生产体系,致力于成为“国产化功率半导体器件热沉材料领跑者”,为我国半导体产业发展添砖加瓦。 博志金钻技术团队在磁控溅射领域深耕二十余年,目前已经实现氧化铝、氮化铝、氮化硅、单晶金刚石、单晶碳化硅覆铜板的量产,三英寸陶瓷覆铜板月产能10万片,包括各类种子层方案,铜层厚度0.5-100um,表面无毛刺、划痕、色差等异样,350度加热平台烘烤5分钟不起泡。博志金钻目前苏州主体工厂面积超过5000平米,含万级洁净间。拥有20余台研磨抛光设备、10余台烧结炉、4条卧式连续镀膜设备、5台立式镀膜设备,以及超声清洗、喷淋甩干等完善的配套设备。博志金钻的工艺流程包括粉体表面改性、热压烧结、研磨/抛光、陶瓷金属化、增厚/刻蚀、预制金锡焊料、激光切割,博志金钻已经建立了完善的产品生产管理及质量监控体系来进行管控,完成了包括ISO9001、14001等认证,并不断完善产品检测设备及手段,确保产品质量稳定。 公司积极进行产品迭代和技术储备,在高功率半导体封装材料研发生产领域有着二十余年研发经验。中国科学院院士孙军教授和国家万人计划领军人才宋忠孝教授作为本公司首席科学家领衔公司技术研发,进行陶瓷金属化和半导体封装基板领域关键技术的探索。潘远志带领公司与西安交通大学表面工程国际研发中心、金属材料强度国家重点实验室合作进行前沿技术开发,团队与苏州市产业技术研究院、高新区共同设立苏州思萃材料表面应用技术研究所,是公司的技术支持和组织依托。目前公司已完成天使轮、preA轮数千万融资交割,公司投后估值逾2亿元。
西安交通大学 2022-08-10
精密量测觇标高的装置
本发明公开了一种精密量测觇标高的装置,包含整合板(1)、可与整合板(1)内螺纹旋合构成而完成棱镜安装平台的棱镜杆(2)及棱镜(4)、可与整合板(1)内螺纹旋合构成而完成整平安装的螺旋杆(3);整合板(1)具有气泡可使用螺旋杆(3)整平。本发明精密量测觇标高的装置构造简单,通用性好,安装要求低,使用操作简单,配合使用该装置可以精确量测出觇标高。
西南交通大学 2016-10-20
共聚焦非损伤微测系统
  非损伤微测技术(Non-invasive Micro-test Technology,NMT)源于美国MBL实验室(54位诺贝尔奖得主的摇篮),由神经学家Lionel F. Jaffe(美国扬格公司创始人之一)于1974年发明,2001年,美国扬格公司正式推出现代NMT。NMT是一种研究活体材料的底层核心技术,研究人员基于NMT能够建立自己独有的Me-Only 研究平台,从而获得极具创新的研究成果。   NMT可在不接触、不损伤样品的情况下,检测分子/离子进出生物活体的流速(流动速率和方向),可测样品种类繁多,小到菌、单细胞、液泡,大到组织、器官、整体都可检测。基于NMT商业化的设备统称为非损伤微测系统。   扬格/旭月的非损伤微测系统包含BIO系列、CONFLUX系列(共聚焦/荧光NMT)、NMT100系列、NMT200系列、NMT100S系列、NMT200S系列、NMT150系列、NMT活体工作站系列、NMT Physiolyzer®系列等,已发展至第七代自动化智能产品。扬格/旭月的NMT系统全部采用从美国扬格(旭月北京)研发中心自主研发的imFluxes智能操作软件,将十余年的NMT应用大数据与设备实现完美结合,并且在产品一体化、自动化、智能化、扩展升级等诸多方面都有大幅提升。   扬格/旭月已取得基于NMT的数十项专利及软件著作权,拥有完善的专利保护体系,所有产品全部通过中关村NMT联盟认证和ISO9001质量体系认证。扬格/旭月所销售的NMT专用耗材,已通过中关村NMT联盟认证,所有耗材是扬格/旭月研发中心结合十余年的经验、摸索并自主研发生产的。NMT专用耗材较传统的通用型耗材保质期更长,性能更稳定、可靠,所有对外销售的耗材全部经过严格的生产、检验流程。   扬格/旭月的NMT研究平台已经帮助国内外科研单位取得近百项各类专利,以及包含Nature、Cell在内的500多篇论文。同时,已销往欧洲的瑞士苏黎世大学(拥有包括爱因斯坦在内10余位诺贝尔奖得主),以及中国科学院、中国林科院、中国农科院、农业部下属的众多科研院所与高校,以及北大、上海交大等知名高校。   美国扬格公司推出新产品共聚焦非损伤微测系统,该系统非损伤性地同时获取活体样品内外离子分子种类、浓度、流速和运动方向的信息,是生理功能鉴定的直接手段。 测量方式和特点:活体、动态、实时、内外兼测、长时间多维扫描与测量。 所测离子和分子:IAA、O2、H2O2、Ca2+、H+、K+、Na+、Cu2+、Pb2+、Cd2+、Cl-、NH4+、NO3-、Mg2+。 测量材料:整体、器官、组织、细胞层、单细胞、(富集)细胞器。 拥有共聚焦功能。 产品型号:CONFLUX-01 参数请来电咨询:82622628 按1 营销中心
旭月(北京)科技有限公司 2021-08-23
LVDT测微仪-芯明天科技
产品详细介绍LVDT 测微仪是适用于多种测量范围的高精度微位移检测仪器,可以独立实现纳米级微位移检测, 广泛应用于各种需要动,静态微位移检测的领域,具有性能优越,测量精度高,价格低等优点。应用特点:测量精度高稳定性好荧光数码管显示,薄膜按键,操作简便具有模拟信号输出,可用于实时检测具有 RS232 通讯接口,可向上位机传输数据回弹式LVDT传感器:主要优点是使用方便灵活
哈尔滨芯明天科技有限公司 2021-08-23
一键式闪测仪
苏州英示测量科技有限公司 2021-12-15
合肥智测电子有限公司
合肥智测电子有限公司,成立于2003年,是高新技术企业,省级“专精特新”企业。公司位于合肥市国家级高新技术产业开发区科技实业园,拥有自主产权的科研、办公、生产场地5000平方米。 公司专业致力于高精度电信号检测、高精度温度检测(包括铂电阻、热敏电阻、热电偶)、高稳态温度场发生(包含电加热、压缩机制冷、半导体制冷技术)和温控技术,研发生产精密计量校验仪器设备、检测仪器、传感器、变送器、温场、热交换设备等。 产品和服务 具有温度传感器、变送器、温度检测仪器、温度校准设备装置等精密温度测量和控制完整的产品线。 公司具有一定的产品定制、产品开发能力并服务于用户。
合肥智测电子有限公司 2024-03-06
类脑神经网络处理器芯片设计与应用研究
一、项目简介 随着AlphaGo及其Zero的相继推出,近年来以神经网络计算为基础的深度学习及相关优化算法已成为人们研究AI的热点。深度学习算法在AlphaGo中的成功应用主要是依赖神经网络监督学习的网络层次及神经元数量提升,而其Zero的应用不同则是在于引进了博弈优化的思想,这就给以并行计算为核心的神经网络优化算法理论研究提供新的思路。 鉴于传统神经网络优化算法面临非全局优化的难题,我们基于吉布斯分布采样优化计算,提出一种以脉冲神经元构成的混合网络结构动力学系统来实现的神经网络全局优化算法,引进纳什平衡理论来优化的神经网络计算方案,并设计一款相应的通用神经网络并行处理器芯片,以新型芯片编程架构模拟人脑功能进行感知、行为和思考新型芯。 二、前期研究基础 本团队主要是由厦门大学福建省集成电路设计工程技术研究中心、厦门大学集成电路设计与测试分析福建省高校重点实验室的教师与学生组成的,主要从事人工智能、网络通讯、集成电路设计、纳米单电子器件等方面的研究工作,并积累了深厚的研究基础。团队首席科学家郭东辉教授十多年前曾在美国加州Berkeley 大学非线性电路实验室访问,从事有关细胞神经网络(CNN)有关课题的研究,先后主持国家自然科学基金项目五项,其中与神经网络研究内容相关的有两项,分别是《视觉神经网络光电集成系统的研究》(批准号:69686004)和《混沌神经网络加密算法及其相应集成电路的设计研究》(批准号:60076015)。 本团队同时也是厦门市集成电路设计公共服务平台的主要技术支撑单位。在厦门市科技重大专项经费的支持下,我们配备了开展模拟及数字SOC 芯片设计所需要的各种EDA 工具和IC 测试设备。此外,厦门集成电路设计公共服务平台也是TSMC、SMIC 等芯片制造厂重要合作伙伴,并与厦门联芯、三安集成等芯片制造厂也有长期的合作协议,可以进行包括射频及功率芯片在内各类模拟及数字SOC 芯片的设计流片。同样,在学校211 和985 经费的支持下,本团队也独立配备了8 台IBM 服务器分别运行MATLAB、OPNET、SPW、ANSYS、Silvaco TCAD 等系统设计与器件工艺仿真工具。本团队所在的微电子与集成电路学科也已列入我校“双一流”建设学科,有关类脑芯片设计相关课题研究所需要的科研环境建设将得到重点支持。特别是厦门联芯公司在量产后,已将本团队作为其先导技术开发的重要合作伙伴,也委托我们开发相应的器件模型及电路工艺库。在厦门火炬高新区及厦门市IC 平台的支持下,厦门联芯公司还可以为我们团队提供免费的MPW流片业务。 自2009年,本团队与福建新大陆电脑股份有限公司签署 “共建SoC联合实验室”以来,基于该平台,每年合作项目经费近百万,同时还完成了多项横向合作项目:面向金融、税控的专用信息处理与控制SoC芯片开发、安全密码算法研究、区块链接技术研究等等,培养了大批优秀的硕士毕业生;厦门市美亚柏科信息股份有限公司是本团队的长期合作伙伴之一。 总之,不管从算法理论研究还是从应用技术开发来看,本课题组已具备相当优秀的研究基础和研究经验,以及显著的前沿技术攻关能力。 三、应用技术成果我们的相关研究成果也得到企业界的重视和肯定,课题组先后承担过如深圳 华为公司首歀交换芯片项目的调度算法设计、福建新大陆首款二维码识别芯片的算法及后端版图综合设计、台湾盛群公司首款32 位处理器及专用处理器编译器开发和厦门元顺公司多款电源管理芯片的设计。最近课题组还为我国某研究机构开发28nm 的低功耗设计流程专门设计一款挂载加可重构解密算法协处理器的32 位通用处理器验证芯片。
厦门大学 2021-04-11
基于硅基外腔芯片的窄线宽连续调频激光器
1. 痛点问题 激光雷达在自动驾驶等领域有重要应用。基于调频连续波技术的激光雷达(FMCW Lidar)有着探测距离远、抗干扰和同时测速等优势,被认为是最具应用潜力的激光雷达。激光光源是FMCW激光雷达的核心器件之一,FMCW光源的调频非线性会严重影响激光雷达的分辨率,导致有效工作距离缩短,阻碍激光雷达性能的提升。 2. 解决方案 本成果预期解决目前调频连续波激光雷达(FMCW Lidar)中光源调频非线性的问题。本成果提出一种基于硅基外腔芯片的窄线宽激光器,通过无源硅基外腔芯片反射波长中心频率和反射相位的联合调谐,可以实现高线性的激光输出频率调谐,其原理架构与和实验验证结果如图1所示。从而突破了传统FMCW光源直接通过电流调制进行调频导致的非线性限制,直接产生高线性连续调频光信号。 合作需求 1、需要融资1800~2000万元,完成研发实验室及一期生产线的建设,以及前期工程样品的开发; 2、需要800平米左右万级超净厂房及配套办公面积,希望有兴趣的地区或者园区能够提供优惠的政策与支持; 3、欢迎FMCW激光雷达厂家及其它对FMCW光源有需求的客户合作,联合测试、共同开发; 4、欢迎在硅光设计、光有源、无源耦合及自动化生产等方面的技术、管理专家加盟,共同打造激光雷达的中国光芯,共创美好未来。
清华大学 2022-03-28
毫米波相控阵芯片
2020年网络通信与安全紫金山实验室宣布,我国自主可控、成本超低的毫米波相控阵芯片诞生,它覆盖广、速度快,为我国实现毫米波通信技术商用全面化迈出了坚实一步。毫米波相控阵芯片我国商用毫米波相控阵芯片出炉,也标志着中国占据了未来5G通信领域的制高点,也无需担心在芯片应用上受制于人,举例来说,256通道的典型相控阵天线售价高达上百万元,这些技术以往都被美国等西方国家牢牢握在手中,我国不得不以高价购买,如今我国率先突破商用毫米波相控阵芯片,确实是值得庆祝的好消息。毫米波的波长范围为1-10毫米,频率则为30GHz-300GHz,以直射波的方式在空间进行传播,据公开的资料显示,毫米波对沙尘和烟雾具有很强的穿透力,几乎能无衰减的通过沙尘和烟雾,甚至在爆炸和金属散射的条件下,毫米波也能较快地从衰减期恢复通信峰值,又因为毫米波比微波的波束要窄,分辨相距更近的小目标时,毫米波可以更清晰的观察目标细节。5G毫米波相控阵芯片毫米波不仅对改善民用通信有帮助,在军事领域同样至关重要,打个比方,两架战机高速对向移动,它们要实现信息传递必须在空间中找到相互通信的定向天线波束,这是一个非常困难的挑战,而毫米波数字阵列程序,就能很好地解决这个问题,毫米波数字阵列程序采用的单元级数字形成波束技术,可以灵活的变通波束通信方案,能大大缩减发现节点时间,提高信息吞吐量。总之,我国商用毫米波相控阵芯片的诞生,对我国未来社会发展、国防力量提升都有促进作用。分析人士指出,这个突破不仅仅是一组数据、一种芯片的突破,它揭示了伊朗刚刚受到的屈辱,永远不会出现在中国。原文:https://baijiahao.baidu.com/s?id=1656335203191635680&wfr=spider&for=pc
南京大学 2021-04-10
首页 上一页 1 2
  • ...
  • 5 6 7
  • ...
  • 348 349 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1