高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
基于光纤的海洋水体放射性环境在线探测系统
海洋是新世纪人类社会赖以发展新的资源空间,21 世纪也被公 认为是海洋的世纪。党的十八大报告明确指出:“提高海洋资源开发 能力,发展海洋经济,保护海洋生态环境,坚决维护国家海洋权益,建设海洋强国。”国家在对海洋的管控、开发、利用进入更深层次, 海洋服务国民经济发展进入更高水平的同时,对治理海洋环境污染, 有效保护海洋环境也提出了更高的要求。近些年,在大力发展核电的 同时,不能忽略的是核能也是把“双刃剑”。核电站一旦发生事故, 将带来巨大的灾难,2011 年 3 月,日本福岛核泄漏事故的发生震惊全 世界,核泄漏事故给日本周边海洋环境造成了巨大的灾难。随着我们 国家核电站的增多,对核辐射监测也提出了更为迫切的需求。 传统的海洋放射性监测方式主要包括在目的海域海水抽样测量 与闪烁晶体类探测,探测具有滞后性、取样成本高、探测范围有限等 缺点。本课题组针对以上问题,将先进的光纤传感技术应用于海洋放 射性探测需求中,利用特种闪烁光纤的放射性探测能力和普通光纤的 低损特性实现长距离、分布式放射性信号的测量。进而通过光纤传感 复用技术,实现多束光纤构成的广域放射信息获取与探测。
南开大学 2021-04-11
海洋塔胞藻新型表皮生长因子制备生物贴膜
目前该产品已应用于腹腔术后及周围神经修复手术动物实验中,效果良好。 本项目利用已有自主知识产权-分子定向进化 的高效表皮生长因子( eEGF)为功能基因表达序 列,采用上游调控序列改造和多拷贝策略构建叶绿 体表达载体,转化和筛选优良的塔胞藻,作为海洋 生物反应器。在集成高效表达技术、代谢工程调 控、蛋白质分离和纯化四级技术平台基础上,实现 重组eEGF的高效表达和生产。进而结合全新的海绵 状胶体成膜技术,将含有eEGF充分吸附到海绵状胶 体膜囊腔中,起到抗挥发、控释缓释的强效作用, 其整合了新颖的精准皮肤营养和修复和先进的生物 工艺学技术,可大幅度提升企业在新兴产业链上的 辐射产品自主创新能力和国际竞争力。
四川大学 2021-04-10
微生物/生物技术/海洋/特种药物研究NMT工作站
“NMT界乔布斯”许越先生推荐创新平台 中关村NMT产业联盟推介成员单位创新产品 “生物安全,人人有责” 推出背景: 在国际竞争白热化,战争形态多样化的今天,生物安全已成为国家安全的重要组成部分,为积极应对这一挑战,2019年10月,生物安全法草案于首次提请十三届全国人大常委会第十四次会议审议。本次新冠肺炎疫情的爆发,让各界更加意识到,生物安全对于确保国家安全、保障社会稳定、人民群众生命安全和身体健康的重要性。 国家安全就是国家竞争,归根结底又是科技实力的竞争!因此,作为中国的高新技术企业,中关村NMT联盟的会员单位,旭月(北京)科技有限公司利用20多年的技术积累,以NMT:非损伤微测技术为底层核心技术,迅速推出了与国家生物安全相关多种检验,监测仪器设备,以及适用于多个学科及领域的研发平台: 《NMT生物安全创新平台》特制系列产品!   应对挑战: 1)微生物检测:微生物的生长繁殖及代谢过程,为微生物的药物研究提供了方向,NMT对微生物如细菌、真菌、微藻的分、离子流速检测,能够快速确定微生物生长过程中的产物,有效地对微生物药物进行确定及筛选。 2) 安全性:NMT是用于研究活体材料的生理环境,其所检测的Na+、H+、K+、Cl-等与细胞能量代谢、细胞凋亡、细胞形态维持等生理过程直接相关。 分类及用途: 1)《微生物药物研究NMT工作站》(型号:NMT-MDR-100) 基于底层核心NMT技术,以及成熟的技术解决方案,让科研人员可以马上投入相关科研创新工作。   2)《微生物药物研究NMT工作站》(型号:NMT-MDR-200) 基于底层核心NMT技术,结合自身科研兴趣,以及其它相关技术参数,在我方技术人员协助下形成技术解决方案,让科研人员建立更具独有创新特色的实验平台。   《微生物药物研究NMT工作站》(型号:NMT-MDR-100) 应对挑战: 1)微生物检测:微生物的生长繁殖及代谢过程,为微生物的药物研究提供了方向,NMT对微生物如细菌、真菌、微藻的分、离子流速检测,能够快速确定微生物生长过程中的产物,有效地对微生物药物进行确定及筛选。 2) 安全性:NMT是用于研究活体材料的生理环境,其所检测的Na+、H+、K+、Cl-等与细胞能量代谢、细胞凋亡、细胞形态维持等生理过程直接相关。 用途: 基于底层核心NMT技术,以及成熟的技术解决方案,让科研人员可以马上投入相关科研创新工作。   参数: 1.基本功能: 1.1针对微生物药物研究设计 1.2活体、原位、非损伤检测 1.3可检测指标:H+、K+、Na+、NH4+、Ca2+、Mg2+、Cl-、O2、H2O2 2.性能: 2.1自动化操作 2.2长时间实时和动态监测 2.3无需标记 2.4立体3D流速检测 3.软件: 3.1imFluxes智能软件,可直接检测、输出离子分子的浓度与流速 《微生物药物研究NMT工作站》(型号:NMT-MDR-200) 应对挑战: 1)微生物检测:微生物的生长繁殖及代谢过程,为微生物的药物研究提供了方向,NMT对微生物如细菌、真菌、微藻的分、离子流速检测,能够快速确定微生物生长过程中的产物,有效地对微生物药物进行确定及筛选。 2) 安全性:NMT是用于研究活体材料的生理环境,其所检测的Na+、H+、K+、Cl-等与细胞能量代谢、细胞凋亡、细胞形态维持等生理过程直接相关。 用途: 基于底层核心NMT技术,结合自身科研兴趣,以及其它相关技术参数,在我方技术人员协助下形成技术解决方案,让科研人员建立更具独有创新特色的实验平台。   参数: 1.基本功能: 1.1针对微生物药物研究和研发设计 1.2活体、原位、非损伤检测 1.3可检测指标:H+、K+、Na+、NH4+、Ca2+、Mg2+、Cl-、O2、H2O2 1.4可实时监测和记录检测时的环境参数:温度、湿度、大气压、海拔、经纬度 1.5配备新指标拓展功能 2.性能: 2.1自动化操作 2.2长时间实时和动态监测 2.3无需标记 2.4立体3D流速检测 3.软件: 3.1imFluxes智能软件,可直接检测、输出离子分子的浓度与流速,以及检测时的环境参数
旭月(北京)科技有限公司 2021-08-23
牙体硬组织原位修复和递送活性物质用高分子材料
本项目从仿生模拟蛋白质促进牙本质及牙釉质再矿化的角度出发,合成表征一系列具有不同代数及改性基团的PAMAM型树枝状高分子,考察其对牙本质及牙釉质再矿化过程中晶核形成、矿物质沉降和富集的促进作用及其作用机理,包括相关的细胞、动物实验研究。主要研究成果如下:1. 成功合成了磷酸和羧酸改性的聚酰胺-胺树枝状高分子(PAMAM-PO3H2和PAMAM-COOH)。通过体外和体内实验研究发现,这两种改性的PAMAM都能诱导牙本质和牙釉质矿化,修复受损牙体硬组织。2.成功合成了阿伦磷酸(ALN)改性的羧酸化聚酰胺-胺树枝状高分子ALN-PAMAM-COOH,并通过体外模拟实验及动物实验发现ALN-PAMAM-COOH具有1. 原位诱导牙釉质再矿化的功能,并对HA有强特异吸附和诱导再矿化的功能,且诱导矿化四周后的牙釉质表面硬度可恢复至95.5%,涂层附着力强。 在进一步研究中发现,羧酸改性的四代聚酰胺-胺树枝状大分子能同时实现药物缓释和诱导受损牙本质矿化的功能,利用树枝状高分子本身可载药的特点将三氯生载入PAMAM-COOH,制备的复合体系可以吸附在牙本质表面。可实现三氯生的缓慢释放并能同时诱导牙本质矿化,因此该材料同时具有负载活性物质(如抗菌药物)和修复受损牙齿的功能。 主要技术指标:1. 本项目制备的磷酸或羧酸改性的树枝状高分子具有原位诱导牙本质及牙釉质矿化(硬度修复95%以上)的功能,且能够用于三氯生等牙齿常用药物的缓释,因此既可作为牙齿修复添加剂也可作为牙齿护理添加剂,并同时可用于负载其它活性物质。 本项目用来修复受损牙本质和牙釉质的树枝状高分子具有良好的生物相容性,且在口腔环境中没有生物毒性,因此可用作制备牙齿护理和修护产品的添加剂。 应用范围: 牙科护理产品、牙科用医疗器械。项目目前已进入小批量生产阶段,成果权属为我校独自拥有。
四川大学 2021-04-11
借助原位环境电镜揭示金属催化剂真实活性表面的研究成果
南方科技大学材料科学与工程系副教授谷猛团队联合中科院大连化学物理研究所、上海高等研究院等,巧妙借助原位环境电镜,在真实反应条件下直接观测到NiAu双金属催化剂在二氧化碳加氢反应中的动态过程,揭示了该催化剂在反应中的真实活性表面,为认识催化过程提供了新的思路。该研究发表在《自然-催化》(Nature Catalysis )上。材料系科研助理韩韶波为文章共同第一作者,谷猛为文章共同通讯作者.实验表明,在反应气氛和温度下,内核Ni原子会逐渐迁移至表面,与Au合金化;在降温停止反应时,表面Ni迁移回核心部分,重新形成Ni@Au壳型结构。原位红外和原位X射线吸收谱的结果也从宏观角度证实了上述观测结果。团队结合理论计算,提出了新的催化机理。该研究揭示了催化剂真实活性表面,展示了原位电镜在研究构效关系中的重要性,并且为研究金属催化提供启示。
南方科技大学 2021-04-11
一种环境友好型药剂原位注入修复污染场地的施工方法
本发明公开了一种环境友好型药剂原位注入修复污染场地的施工方法,包括:进行小试试验;构筑竖向隔离墙;在待修复区域地表覆盖压实黏土层;对注入施工点位进行定位,并将施工设备就位于施工点位;注入废糖蜜及醋酸菌混合溶液;对施工点位进行封孔;移位施工设备;在压实黏土层上铺设防渗土工膜,所述防渗土工膜与隔离墙连接;从待修复区域取样检测酸碱度及氧化还原电位;注入微米铁粉及黄原胶混合溶液;对施工点位封孔;施工设备移位;在待修复区域地表覆盖防渗土工膜。该施工方法能显著提高药剂的有效作用距离,提升对土壤及地下水中污染物的
东南大学 2021-04-14
铝熔体自生Al2O3-铁铝原位复相增强行为
研发阶段/n内容简介:采用原粉或中间合金直接在铝熔体中原位反应生成复合增强相的办法熔炼复合材料,分别在不同压力状态下(自重状态、100吨液压机上和1.5KW超声波发生器中)和约束状态下(将三维金属网预置于金属型中)凝固,在不同的工艺控制条件下(温度、压力、时间等),研究凝固组织中三维立体金属网、Al2O3、铁铝系金属化合物的形态及其微界面传热和传质规律,并通过不同的热处理工艺研究三维立体金属网络、自生弥散质点Al2O3、铁铝金属间化合物对金属基体复相强化特点。从而获得了具有高强度、高韧性、高模量、耐
湖北工业大学 2021-01-12
牙体硬组织原位修复和递送活性物质用高分子材料
本项目从仿生模拟蛋白质促进牙本质及牙釉质再矿化的角度出发,合成表征一系列具有不同代数及改性基团的PAMAM型树枝状高分子,考察其对牙本质及牙釉质再矿化过程中晶核形成、矿物质沉降和富集的促进作用及其作用机理,包括相关的细胞、动物实验研究。主要研究成果如下: 1.成功合成了磷酸和羧酸改性的聚酰胺-胺树枝状高分子(PAMAM-PO3H2和PAMAM-COOH)。通过体外和体内实验研究发现,这两种改性的PAMAM都能诱导牙本质和牙釉质矿化,修复受损牙体硬组织。 2.成功合成了阿伦磷酸(ALN)改性的羧酸化聚酰胺-胺树枝状高分子ALN-PAMAM-COOH,并通过体外模拟实验及动物实验发现ALN-PAMAM-COOH具有原位诱导牙釉质再矿化的功能,并对HA有强特异吸附和诱导再矿化的功能,且诱导矿化四周后的牙釉质表面硬度可恢复至95.5%,涂层附着力强。 3.在进一步研究中发现,羧酸改性的四代聚酰胺-胺树枝状大分子能同时实现药物缓释和诱导受损牙本质矿化的功能,利用树枝状高分子本身可载药的特点将三氯生载入PAMAM-COOH,制备的复合体系可以吸附在牙本质表面。可实现三氯生的缓慢释放并能同时诱导牙本质矿化,因此该材料同时具有负载活性物质(如抗菌药物)和修复受损牙齿的功能。
四川大学 2016-04-20
太阳能原位电化学生物复合黑臭河道治理技术与装置
黑臭河道治理是目前各级政府环境治理工作的重点。城市黑臭河道面大量广,治理难度大,治理效果易反弹,传统的物理法、生物法、化学法都不同程度存在成本高、易反弹以及容易造成二次污染等问题。利用电化学处理降解废水中的有机污染物具有速度快、降解彻底、效率高等优点,但是电极材料的低稳定性使这一技术难以投入实际应用。本项目在提高电极材料的稳定性方面取得了突破性进展,从而使得电化学-生物复合黑臭河道治理技术的成本降低到可以大规模产业化应用的水平,同时治理效果稳定,治理速度快,治理过程中不投加化学药剂和生物制剂,不会对环境造成二次污染。目前本技术已经完成实验室小试、样机制备和中试,等待风投进入将本技术做大做强。
江南大学 2021-04-13
一种垂直磁各向异性磁性隧道结单元测试系统及测试方法
本发明提供了一种垂直磁各向异性磁性隧道结单元测试系统, 包括探针测量平台,探针测量平台的两个探针前端分别加在 MTJ 单元 的上下电极,两个探针的后端分别连接电源测量模块的高低电平输出 端口;带铁芯绕组线圈固定在 MTJ 单元的空间正上方,绕组线圈电源 的正负极接带铁芯绕组线圈的两端;计算机测试平台控制绕组线圈电 源向带铁芯绕组线圈提供不同的电压,并控制电源测量模块产生电压 激励信号以获取电流响应信号,根据电压激励信
华中科技大学 2021-04-14
首页 上一页 1 2
  • ...
  • 31 32 33
  • ...
  • 81 82 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1