高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
压力容器
公司拥有I、II类压力容器设计、制造、安装改造维修资质,取得了国家质监总局颁发的压力管道安装许可证(公用管道 GB1、GB(2)1级,工业管道GC1级),压力容器制造许可证(第一类低压、第二类中低压容器:10MPa以内各类适用的压力容器),压力容器安装、改造、维修I级许可证,以及压力管道元件许可证(AX级防腐蚀压力管道用元件),年可生产各类油田专用设备800余台(套)。 主要产品包括油井密闭生产装置、高效三相分离器、水套加热炉、天然气立式分离器、油水分离缓冲罐、分气包、量油分离器、过滤器、换热器、常压容器等。市场覆盖大庆油田、辽河油田、胜利油田、中原油田、延长油田、新疆克拉玛依油田、 塔河油田等。
胜利通海油田服务股份有限公司 2021-09-07
电梯势能综合回收利用及安全保护装置
对电梯运行中能耗产生机理开展研究,掌握不同电梯种类运行过程中能耗随时间变化的统计规律,为优化能量回收利用控制策略奠定基础;研究电梯配置参数和运行曲线 等对电梯能耗的影响。新型可匹配蓄能器充压非线性上升特性的恒功率变量柱塞泵的研发,曳引电梯动态特性的数字仿真分析及试验研究,通过曳引系统的功能关系,建立典 型曳引电梯的的液电混合控制动力学模型,采用专用的机电系统仿真软件进行分析。电梯运行过程关键参数的试验测试系统,建立能够模拟电梯运行的四象限加载试验系统, 对建立的能量回收利用系统进行试验考核;在实际电梯中示范应用及节能效果测试。
太原理工大学 2021-05-06
联合站油田采油污水余热回收热泵装置
注水采油生产工艺中,油气水混合物被输送到联合站进行三相分离,典型的分离工艺是将油气水混合物加热到 45-48℃,送入三相分离器进行三相分离,分离后的原油含水率达到销售标准,废水经过滤沉降、冷却降温、生化处理等手段处理后回注地下,气体则作为生产过程加热的燃料。国内大部分油田井口采出液的含水率一般都在 70%以上,长庆油田约为 50%左右。以含水率 50%为例,水的比热约为原油的两倍,因此用于加热混合物的热量约有 3/4消耗在水中,三相分离后这部分废水携带大量余热回注地下,造成能量浪费。这些用于加热站外来液的能源形式主要有两种:一是附近刚好有天然气采气厂,则可从采气厂引专门的天然气管线供应燃料,经济性较好;附近没有采气厂的,只能烧外输的原油获取热量,经济性非常差并影响原油产量。三相分离器分离出的天然气有限,对解决生产加热作用甚微。 
西安交通大学 2021-04-11
一种水泥回转窑余热回收装置
本实用新型涉及一种水泥回转窑余热回收装置,包括窑体和支架,所述窑体上方设有与窑体同轴布置的集热罩,所述集热罩内设置有集热水管,所述集热水管包括上层集热水管和下层集热水管,所述下层集热水管设置在靠近窑体的内层,所述下层集热水管的外层设有不锈钢板,所述不锈钢板靠近窑体的一侧涂有涂层,所述不锈钢板远离窑体的一侧设有上层集热水管,所述上层集热水管的外层设置有彩钢板。上述技术方案中提供的水泥回转窑余热回收装置,其结构简单,设计双层集热水管,上层集热水管吸收有涂层的不锈钢板的热量,起到预热冷水的效果,当水循环进
安徽建筑大学 2021-01-12
超大直径法兰盘磁性液体静密封装置
本发明属于机械工程密封技术领域,特别适用于对直径大于 800 mm 的密封件的静态真空密封或正压密封。 本发明所要解决的技术问题是,现有超大直径法兰盘真空密封的方法存在着泄漏,使用寿命短等一系列弊病,因此,提供一种橡胶密封和磁性液体密封组合的超大直径法兰盘磁性液体静密封装置。 本发明的技术方案:密封装置由磁性液体密封和橡胶密封两部分组成,内部靠橡胶密封圈达到一定的密封能力,主要靠外部的磁性液体密封达到零泄漏;通过这两重密封就可以达到超大直径静密封的超高真空或正压密封的要求。 超大直径法兰盘磁性液体静密封装置包括:法兰盘、套、橡胶圈、永磁铁、磁性液体、极靴。在法兰盘的第一阶台阶、第二阶台阶上安装一个采用非磁性材料制成的套,紧靠套在橡胶密封台上嵌入橡胶密封圈,安装上套和橡胶密封圈的法兰盘和另一个法兰盘通过螺栓固定在一起后,在极靴处注入磁性液体,最后将多个圆柱形永磁铁嵌入沿两个法兰盘的第四阶台阶的圆周上,磁性液体在磁场的作用下吸附在密封间隙中,形成可靠密封。 本发明的有益效果是,采用磁性液体密封和橡胶密封组合一起的超大直径法兰盘静 密封,其泄漏率低于 10-11pal·m3/s,使用寿命长,而且装配方法简单,同时具有磁性液体密封和橡胶密封的优点,克服了原有密封的弊端,而且不破坏原有的其它结构。
北京交通大学 2021-02-01
超大直径法兰盘磁性液体静密封装置
本发明属于机械工程密封技术领域,特别适用于对直径大于800 mm的密封件的静态真空密封或正压密封。 本发明所要解决的技术问题是,现有超大直径法兰盘真空密封的方法存在着泄漏,使用寿命短等一系列弊病,因此,提供一种橡胶密封和磁性液体密封组合的超大直径法兰盘磁性液体静密封装置。 本发明的技术方案:密封装置由磁性液体密封和橡胶密封两部分组成,内部靠橡胶密封圈达到一定的密封能力,主要靠外部的磁性液体密封达到零泄漏;通过这两重密封就可以达到超大直径静密封的超高真空或正压密封的要求。 超大直径法兰盘磁性液体静密封装置包括:法兰盘、套、橡胶圈、永磁铁、磁性液体、极靴。在法兰盘的第一阶台阶、第二阶台阶上安装一个采用非磁性材料制成的套,紧靠套在橡胶密封台上嵌入橡胶密封圈,安装上套和橡胶密封圈的法兰盘和另一个法兰盘通过螺栓固定在一起后,在极靴处注入磁性液体,最后将多个圆柱形永磁铁嵌入沿两个法兰盘的第四阶台阶的圆周上,磁性液体在磁场的作用下吸附在密封间隙中,形成可靠密封。本发明的有益效果是,采用磁性液体密封和橡胶密封组合一起的超大直径法兰盘静密封,其泄漏率低于10-11pal·m3/s,使用寿命长,而且装配方法简单,同时具有磁性液体密封和橡胶密封的优点,克服了原有密封的弊端,而且不破坏原有的其它结构。
北京交通大学 2021-04-13
磁液体光栅
针对传统光栅衍射效应固定不变,不可调节,运用面狭窄的问题,提出了一种磁流体光栅,利用外磁场的强度来控制磁流体的折射率和吸收系数,进而使得磁流体光栅的折射率调制和吸收系数调制随外磁场的改变而改变,实现磁流体光栅衍射效率可调的特性。   所述磁流体光栅包括一个周期性凹槽、一种磁流体、一个光学透明的刚性覆盖层及一个磁场产生装置,磁流体填入周期性凹槽的各个凹槽中,光学透明的刚性覆盖层将磁流体密封在周期性凹槽中,磁场产生装置置于周期性凹槽外,磁场产生装置通电后在磁流体所在的位置产生均匀、可调的磁场,用于改变磁流体的折射率和吸收系数。   所述的周期性凹槽是在光学透明的刚性衬底上用带折射率的光学材料隔成一个个凹槽,制作凹槽的方法采用蚀刻法。所述磁流体,由表面包覆活性剂的磁性微粒和用于分散磁性颗粒的液相载液组成。所述周期性凹槽的深度在1μm—10μm之间、宽度在1μm一200μm之间。所述光学透明的刚性衬底和光学透明的刚性覆盖层为石英(Si02)、光学玻璃。所述的周期性凹槽的周期Λ、深度d、入射光波长λ和磁流体光栅的平均折射率n0满足关系式2πλd/(noΛ)2<<1薄光栅条件,形状选用矩形、锯齿形、余弦形。所述的磁流体的磁性微粒选用四氧化三铁(Fe304)、三氧化二铁(Fe203)、锰锌铁氧体,表面活性剂选用油酸、亚油酸、橄榄油,液相载液选用水、煤油。所述的磁场产生装置包括一个或一对螺线圈和一个可调直流恒流源,该可调直流恒流源用于给电磁铁或螺线圈供电,其输出电流的大小控制电磁铁磁场或螺线圈感应磁场的强度。所述的磁场产生装置产生的磁场平行于衬底或覆盖层的表面、并且垂直于凹槽的长边侧壁。  将磁流体这一液相磁性物质用来制作光栅,利用磁流体的折射率和吸收系数随外磁场强度变化的特点,通过外磁场即可控制光栅的衍射光效率,从而实现了衍射奴率可调的光栅。实现了可在线、实时调节指定阶次衍射光的衍射效率,为光通讯和光子器件领域的性能提高提供了新的方法。
上海理工大学 2021-04-11
液体的比重
比重计和比轻计,配高30cm透明盛液量筒,测量液体的比重和密度。
宁波华茂文教股份有限公司 2021-08-23
分层的液体
180mm×180mm×210mm,液体分层明显。
宁波华茂文教股份有限公司 2021-08-23
大板坯连铸机力能参数和力学强度研究技术
为了成功地研制板坯连铸机,首先必须完成铸机力能参数和力学强度研究。力能参数方面的研究主要包括:结晶器振动模态参数动力学研究、拉矫机矫直力及拉坯阻力的研究等;力学强度方面的研究主要包括钢包回转台、中间罐车、振动机构框架、拉矫机机架等重要部件的强度、刚度及动力学研究等。同时,为了考核连铸机实际装备水平,还应对板坯连铸机的力能参数和力学强度进行现场实测,我校在这些方面都进行了深入研究,并取得了丰硕成果。 在消化移植武钢的大型弧型板坯连铸机的工作中,我校承担了板坯连铸机力能参数和力学强度的研究工作,在研究中应用了三维有限元法、最优化设计、模态分析、频谱分析等先进设计分析方法,取得了精确的计算结果。并在大规模系统测试的基础上,运用了系统仿真等现代手段,使我国的铸机分析研究达到新的水平。 武钢连铸机经过三年的研究和制造,于1989年投产一次成功,月产量超过原设计指标,铸坯合格率达到了99.78%,该项目荣获国家科技进步一等奖和冶金部科技进步一等奖
北京科技大学 2021-04-11
首页 上一页 1 2 3 4 5 6
  • ...
  • 296 297 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1