高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
实验室安全智能监测与控制系统
     实验室安全智能监测与控制系统为高校实验室安全提供一体化解决方案。项目基于全要素管理、全过程监控、全方位感知(简称“三全”)的理念,聚集于实验室安全智能化管控,构建实验室安全智能监测与控制系统,通过多维监测、安全预警和智能应急等举措,开展实验室智慧安全管理,实现实验室的本质安全,提高实验室安全的技防水平。     实验室安全智能监测与控制系统采用模块化设计,由11个模块组成,责任体系、安全教育与考试、安全准入、分级管控、安全检查、危险源管理、应急管理、安全档案、综合管理、数据可视化。基于实验室安全工作的实际需求设计,由校级平台和院级平台组成。校级平台可实时监控各院系实验室安全工作情况,进行各类数据的调用、统计和分析,主要用于实验室安全工作决策和安全工作考核。院级平台可通过各模块开展具体管控工作,能够实时监控各实验室人员、危险源、环境等状况,实现实验室安全工作的智能管控。
江苏忠江智能科技有限公司 2022-07-12
数控铣床电气控制与维修实训台
产品详细介绍BCS-802CMB数控铣床电气控制与维修实训台(半实物/西门子)一、结构与特点:  1、BCS-802CMB数控铣床电气控制与维修实训系统,由实训台和三坐标组成,能完成数控系统的安装调试、参数设置、PLC编程、故障诊断与维修、数控铣床调试、数控编程与坐标运动等教学实训。  2、系统采用开放式结构,将一台数控铣床电控系统在实训台上进行分解展示,模块化设计,将数控系统接口信号在各模块上展开,信号可测量。  3、三坐标平台采用直线圆形高碳钢导轨,滚珠丝杆传动。具有较高的定位精度和重复定位精度。 二、技术性能:  1、输入电源:三相四线380V±10% 50Hz  2、装置容量:<2KVA  3、实训台外形尺寸:1370mm×600mm×1890mm三、配置及功能:  1、控制屏采用铁质双层亚光密纹喷塑结构。  2、数控系统单元采用西门子802C 数控系统。  3、X/Y/Z进给轴均采用交流伺服电机驱动。  4、主轴电机由变频器进行无级调速。  5、设计有专门的故障设置区和排故操作单元。四、半实物数控铣床参数:  ◆工作台面宽度(长×宽):300×200mm  ◆主轴端面至台面最大距离:220 mm  ◆主轴装夹范围:0.5~13mm  ◆T型槽数及槽宽:3×8 mm  ◆工作台X轴行程:180mm  ◆工作台Y轴行程:90mm  ◆工作台Z轴行程:200mm  ◆定位精度:0.02mm  ◆主电机功率:150W五、部分实训项目:  1、数控铣床电气系统的设计  2、数控系统的参数设置与调整  3、输入输出接口实训  4、机床参考点的调试  5、伺服电机驱动单元的调试与应用   6、变频器的调试、参数设置与应用  7、数控系统的通讯  8、数控铣床故障诊断与维修  BCF-MB数控铣床电气控制与维修实训台(半实物/法那科) 一、产品介绍:  1、BCF-MB数控铣床电气控制与维修实训,由实训台和半实物组成,能完成数控系统的安装调试、参数设置、PMC编程、故障诊断与维修、数控铣床装配调试、数控编程与加工操作等到多项教学实训。  2、系统采用开放式结构,将一台数控铣床电控系统在实训台上进行分解展示,模块化设计,将数控系统接口信号在各模块上展开,信号可测量。  3、半实物数控铣床采用直线圆形高碳钢导轨,具有一定的铣削能力,可对有机玻璃、塑料等材料进行简单铣削加工。  4、具有真实数控铣床的机械运动,X、Y、Z进给轴采用伺服电机驱动,并设计有正负限位,参考点等开关,主轴采用三相异步电机变频控制,由三菱变频器驱动,实现无级调速控制。二、结构与功能:  1、数控系统单元采用法那科 "FANUC 0i Mate MD"数控系统。  2、控制屏采用铁质双层亚光密纹喷塑结构。  3、电源部分采用三相四线380V交流电源供电,漏电保护器控制总电源,控制屏的供电由钥匙开关和启停开关控制,电压表监控电网电压。  4、X/Y/Z进给轴均采用βi系列交流伺服电机驱动。  5、主轴电机由变频器进行无级调速。  6、设计有专门的故障设置区和排故操作单元。在实训台上有LCD点阵图滚屏显示故障代码。配套试卷考题300道。三、技术性能  1、输入电源:三相四线380V±10% 50Hz   2、装置容量:<2KVA  3、实训台外形尺寸:1800mm×700mm×1890mm四、半实物数控铣床参数  ◆主轴夹头装夹范围:Φ1-13 mm  ◆工作台面积 :300×200mm  ◆工作台T型槽数及宽度 :3×10mm  ◆X/Y/Z轴行程:200×200×150mm  ◆定位精度:0.02 mm  ◆主轴电机功率:180W  ◆主轴最高转速:1500rpm  ◆外形尺寸:700×600×800 mm五、部分实训项目  1、数控铣床电气系统的设计  2、数控系统的初始化  3、数控系统的参数设置  4、输入输出信号的使用  5、机床参考点的设置  6、进给驱动单元的调试与应用   7、主轴变频器的调试与应用  8、数控系统的通讯  9、PMC编程及应用  10、数控铣床故障诊断与维修  11、数控铣床编程操作与加工相关产品: ·数控车床实验台(云制造系统)·BC-XMZ808D数控车床电气控制实训考核柜·BC-01A数控车床综合实训考核装置·BC-01B数控铣床综合实训考核装置·BC-03A型 数控车床综合实训考核装置·BC-03B型 数控铣床综合实训考核装置·BC-04A 数控车/铣床综合智能实训考核装置(二合一)·BC-04B 数控车/铣床综合智能实训考核实验台·BCS-802CMB数控铣床电气控制与维修实训台(半实物/西门子)·BCS-802CTB数控车床电气控制与维修实训台(半实物/西门子)·BCS-802CMC数控铣床电气控制与维修实训台·BCS-802CTC数控车床电气控制与维修实训台·数控机床控制维修组装综合实习台
上海博才科教设备有限公司 2021-08-23
技术需求:1、解决连续热压机多液压控制系统中难题。 2、解决热压机板厚控制系统难题。
1、解决连续热压机多液压控制系统中难题。2、解决热压机板厚控制系统难题。
临沂兴滕人造板机械有限公司 2021-08-24
一种毫米波天线对中控制系统
成果描述:本发明公开了一种基于毫米波通信天线差速旋转方式的毫米波天线对中控制系统。本发明的对中控制系统由多个相同的对中控制装置组成,对中控制装置分别设置在不同的毫米波天线通信站点中;每个对中控制装置包括天线转动模块、位置信息检测模块、天线信息采集传感器和对中控制模块;天线转动模块、位置信息检测模块和天线信息采集传感器分别与对中控制模块。本发明能有效提高毫米波天线对中精度,实现天线自动化对中通信,减少对中前的准备工作和数据交换工作,增加毫米波的通信保密性,实现毫米波通信机动性、可靠性及野外自适应特性。市场前景分析:天线自动化领域。与同类成果相比的优势分析:技术先进,性价比较高。
西南交通大学 2021-04-10
一种汽车悬架减振器控制系统及方法
成果描述:本发明公开了一种汽车悬架减振器控制系统及方法,包括车身垂向振动加速度传感器、状态观测器、控制器以及磁流变减振器;状态观测器仅根据车身垂向振动加速度传感器信号即可对汽车的运行状态和行驶路况进行识别和预测,而不需要其他的车载传感器;控制器根据状态观测器的估计结果实时调节磁流变减振器活塞杆内电磁线圈中的电流值,进而实现对磁流变减振器性能的实时控制。该汽车悬架减振器控制系统在各种车况和路况下都有良好的工作条件,适用于各种道路与非道路车辆,尤其适用于高端乘用车和新能源汽车市场。市场前景分析:汽车技术领域。与同类成果相比的优势分析:技术先进,性价比较高。
西南交通大学 2021-04-10
一种风电集群轨迹预测与分层控制方法
本发明涉及一种风电集群轨迹预测与分层控制方法,包括:根据风电集群及风电场内的拓扑结构,基于空间相关性和NWP数据进行超短期风电功率预测;根据调度中心下发的调度值,将控制过程在空间上分为集群优化调度层、场群协调分类层和单场自动执行层,将风电功率预测值从时间上逐层细化;在场群协调分类层,基于风电功率预测值对风电场进行分类,分为上爬坡群、下爬坡群、平稳群和振荡群;在单场自动执行层,基于AGC机组下旋转备用裕度和风电送出断面裕度判断风电可增发空间,增发上爬坡群风电场出力或降低下爬坡群风电场出力;基于风电场运行与监测系统,根据监测到的风电场实际值,计算并反馈风电功率误差,修正风电集群和风电场预测值,使优化过程更加精确。
中国农业大学 2021-04-11
电动汽车负载随机接入无线充电的稳定控制方法
本发明公开了一种电动汽车负载随机接入无线充电的稳定控制系统及其方法,适用于电动汽车负载数量不确定的路口无线充电情形,属于电动汽车无线充电技术领域。该方法主要包括监测负载个数,根据负载个数得到稳态电压调控方案,进而基于动态功率有界波动域的监测点选取方法,分析得到最优监测点的位置,最终实现各负载充电功率稳定,解决单一发射区域多接收电动汽车负载系统中新增负载带来的电动汽车单体接收功率跌落问题。采用本发明的电动汽车负载随机接入无线充电的稳定控制方法,随着新负载的接入仍能保证各负载接收功率稳定,且接入过程中不对其他负载接收功率产生较大冲击。
东南大学 2021-04-11
复杂条件下破碎围岩巷道深浅支撑层控制技术
本成果获教育部高等学校科学研究优秀成果奖(科学技术进步奖)。采用实验力学方法研究和掌握了在高应力、强流变、强采动影响等复杂条件下巷道破碎围岩岩体峰后软化、峰后剪胀扩容及流变等特性和规律;建立了围岩体力学特征和围岩支护结构体的相互关系。基于复杂条件下巷道破碎围岩的峰后强度软化和剪胀扩容效应,考虑巷道开挖后岩体强度、变形和应力分布特征,建立了复杂条件下软弱破碎巷道围岩的深浅支撑层结构理论;综合考虑围岩强度、应力和变形破坏的区域分布特征,将围岩划分为深浅支撑层结构,分析了深浅支撑层与围岩稳定的关系及深浅支撑层的演化特征和巷道变形破坏特征;掌握了巷道围岩宏观力学结构,确立巷道支护须控制的范围和支护方式确定。自主研发了锚固体流变拉拔试验系统,获得了锚固体流变失稳机理、破坏特征及类型,提出了破碎围岩巷道深浅支撑层流变破坏分析方法、结构特征及支护设计,为锚固支护结构失效诊断、有效控制深浅双支撑线层结构内巷道流变变形及防止失稳提供了依据。形成了基于深浅双支撑层理论的巷道支护设计方法和技术,提出了复杂条件下的巷道变形特征和围岩结构的预测方法、控制措施及巷道需求支护力的计算方法。对于破碎围岩巷道支护时,必须首先确立巷道的围岩赋存状态及围岩结构,分析计算深浅双支撑层结构的存在范围、力学特征和规律,进而确立浅支撑层的位置和所需支护力,一般可以形成以“锚网喷+高预应力 U 型钢桁架锚索+注浆”为核心的复合支护形式。锚杆对浅支撑层补强后,浅支撑层岩体与锚杆形成组合拱式的承载结构,锚索将浅支撑层与深支撑层联合起来共同形成围岩整体承载结构,而锚注再次对围岩进行加固,提高围岩整体强度,改善围岩应力分布状况,使围岩变形协调化、荷载均匀化,对深浅支撑层发挥整体承载能力具有重要作用。
安徽理工大学 2021-04-11
槽式光热发电多模型预测函数控制及其优化
针对太阳能集热系统扰动多、大滞后和大惯性等控制难点,建立了适合控制器设计的简化分段非线性模型,并设计了基于预测函数控制策略的集热系统出口导热油温度控制系统。该预测函数控制策略在调节速度、超调量以及稳定性方面的控制效果均明显优于传统PID控制策略;与未简化的多模型预测控制相比,简化后的多模型预测函数控制的最大动态偏差增大了13%,但计算量大大降低,控制器的实时性也得到增强。
南京工程学院 2021-05-21
热轧L2级过程自动化控制系统
热轧过程自动化控制系统(L2)主要任务是对热轧全线的生产工序进行实时跟踪、数据采集和工艺参数优化,获得满意的产品尺寸精度和各项性能指标。 成功的热轧过程自动化控制系统应该达到三个要求:控制系统运行稳定、功能设置灵活实用、产品质量控制精确。 控制系统能否运行稳定主要取决于计算机硬件系统的合理配置以及中间件和应用软件的结构设计及编程质量。 功能设置的灵活实用主要体现在控制系统的功能和接口是否可以很好地适应热轧各种不同的生产工艺要求和关键参数控制,以方便工艺技术员实现产品和工艺开发。 产品质量要控制精确,关键在于设定计算所涉及的数学模型、控制策略、自适应算法等。 高效轧制国家工程研究中心在大型热轧自动过程控制系统进行了多年的研究和开发,承担并且完成了国内许多热轧工程项目,积累了丰富的现场经验和各种成熟的解决方案,能够完成从系统设计﹑软件设计、编程调试﹑现场服务﹑到开工投产的全过程。本项目的主要内容包括: 硬件和系统软件:所选用的基于PC服务器的过程控制软硬件系统已经在多家大型热轧工程项目中成功应用,系统稳定性经受了现场长时间的严格考验。 支持软件:中间件(Middle Ware)是过程自动化系统的核心支撑软件,即应用软件的开发平台和运行环境,本项目采用的中间件PCDP(Process Control Develop Platform)是由高效轧制国家工程研究中心自主研制开发的,具有完全知识产权。 应用软件:高效轧制国家工程研究中心提供的过程自动化应用软件涵盖了热轧的各项控制功能:初始数据管理、轧件跟踪、轧制节奏、设定计算(预计算、再计算、后计算、模型自适应)、通信管理、测量值处理、HMI画面管理、历史数据管理、报表管理、轧辊数据管理、模拟轧钢等。 数学模型:高效轧制国家工程研究中心能够提供如下数学模型: (1)自动燃烧控制模型,(2)轧制节奏控制模型,(3)轧制温度模型〔空冷温降、高压除鳞温降、形变热、轧件与轧辊接触时的传导温降等〕,(4) 轧件变形模型〔变形抗力、轧辊压扁、轧制力和轧制力矩等〕,(5)自动宽度控制模型,(6)板形设定和控制模型,(7)终轧温度控制模型,(8)卷取温度控制模型,(9)卷取设定模型,(10)平面形状控制模型,(11)控温轧制模型,(12)轧制规程优化模型 本项目适用于所有新建的、已有的热轧厂(常规的热轧厂,薄板坯连铸连轧厂, 中厚板厂)。
北京科技大学 2021-04-11
首页 上一页 1 2
  • ...
  • 80 81 82
  • ...
  • 150 151 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1