高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
17KW三相两级式无变压器隔离并网发电逆变器
该成果采用两级式电路,两级式光伏并网逆变器一般是在逆变器前级加入一个 DC/DC变换器。前级 DC/DC 变换器主要完成最大功率点跟踪功能,通过控制太阳能电池板的输出电压 UPV 跟踪基准 Umppt,进而实现太阳能电池板最大功率输出, PI 调节器的输出与载波比较生成 PWM 信号控制 DC/DC 变换器的开关管。后级 DC/AC 环节主要实现并网功能和稳定直流母线电压功能。成果中两级式拓扑结构是由前级一个 Boost 变换器和后级一个全桥逆变器构成。
扬州大学 2021-04-14
联合循环发电机组的性能指标修正比较方法及调控系统
本发明公开了一种联合循环发电机组的性能指标修正比较方法,包括:1)根据实时数据库中的测量数据,计算联合循环机组在当时大气环境、运行方式下整体的功率、热耗率和气耗率;2)获取与性能修正计算因子相关的测量数据,计算相关的性能指标修正计算因子;3)对步骤1)中的各项性能指标进行修正得到修正计算后标准ISO工况的性能指标;4)将标准ISO工况的性能指标数据与其它机组或本机组以往的修正计算后标准ISO工况的性能指标数据进行比较,根据评估结果由运行人员输出相应的运行调整控制指令。本发明还公开了一种基于联合循环发电机组的性能指标修正比较方法的调控系统。本发明方法可优化机组运行,提高经济性和安全性。
浙江大学 2021-04-11
回收火力发电厂干法捕集CO2过程余热并用于供热的系统
本发明公开了一种回收火力发电厂干法捕集CO2过程余热并用于供热的系统,该系统包括碳捕集机组和抽汽供热机组。本发明采用低温热网回水作为冷却碳捕集机组中碳酸化反应器的冷却介质,实现了吸附过程中放出的大量低品位热量的回收利用;利用再生反应器出口的再生气体取代碳捕集机组中低温回热器加热凝结水,回收再生气体的冷却热,减少碳捕集机组的低压抽汽;采用吸收式热泵回收了供热机组中部分汽轮机的排汽余热。本发明结合低温干法捕集CO2的技术和吸收式换热技术的优势,回收碳捕集过程中的余热,同时实现发电、CO2捕集和集中供热,符合能量梯级利用的原则,整个系统具有较好的经济性。
东南大学 2021-04-11
大长径比半直驱高效水平轴650千瓦海流能发电机组
浙大650千瓦机组在2017年就完成了厂内和现场并网发电试验。此后,浙大摘箬山岛海洋能试验电站根据国家需要,数次腾出650千瓦机组试验泊位为国内包括国电集团(和浙大共同承担国家自然资源部项目)、哈电集团、杭州江河水电等单位研制的300千瓦样机提供实海况试验支撑。其间,650千瓦机组也根据阶段性海试信息优化改进。此次疫后“复工发电”的改进型650千瓦机组,叶轮结构和工艺进一步优化,轴向推力载荷有所减小,防腐防砂抗磨损的性能进一步强化。我国东部沿海是世界上海流能功率密度最大的地区之一。浙江舟山群岛附近水道平均功率密度在每平方米20千瓦以上,开发环境和利用条件十分有利。日益成熟的海流能发电装备将有效满足无电、无水、无人岛屿和离岛的特殊供电需求,实现就地取能、海能海用。
浙江大学 2021-04-11
首台氢燃料电池混合动力机车轨道交通大功率燃料电池发电系统
2021 年 1 月 27 日,由西南交大与中车大同联合研制的我国首台氢燃料电池混合动力机车,在中车大同电力机车有限公司成功下线,标志着我国氢能轨道交通技术取得关键突破。该车采用西南交通大学陈维荣教授团队研发的轨道交通大功率燃料电池发电系统,突破了燃料电池混合动力系统集成、系统优化控制以及能量管理等核心技术,电堆采用国际领先、可低温启动的日本丰田金属电堆,这也是燃料电池金属电堆在轨道交通领域的首次应用。该车设计时速每小时 80 公里,满载氢气可单机连续运行 24.5 小时,平直道最大牵引载重超过 5000 吨,在不用改变任何铁路基础线路条件下,可在各类机务段、车辆段、编组站以及大型工厂、矿山、港口等场所执行运转、调车、救援等多用途任务。 陈维荣教授团队自 2008 年起,在我国率先开展氢燃料电池在轨道交通中的应用研究,开拓了氢能轨道交通研究方向。历时十余年的技术攻关,团队突破了大功率燃料电池优化控制、混合动力系统能量管理、故障诊断与寿命预测等关键技术,于 2013 年成功研制我国首辆燃料电池电动机车,并于 2016 年与中车唐山公司联合研制成功世界首列燃料电池混合动力有轨电车,引领了我国氢能轨道交通技术发展。 
西南交通大学 2021-04-13
独立无刷双馈感应发电机无速度传感器直接电压控制方法
本发明公开了一种独立无刷双馈感应发电机无速度传感器直接 电压控制方法,将无刷双馈感应发电机的功率绕组 PW 电压矢量分解 为同步旋转坐标系中的 d 轴和 q 轴分量,调节控制绕组 CW 电流幅值 使 PW 电压的 d 轴分量收敛至 PW 电压的参考幅值,调节 CW 电流频 率使 PW 电压的 q 轴分量收敛至 0,当系统稳定时 PW 电压矢量与同 步旋转坐标系的 d 轴重合,于是同时实现了对 PW 电压幅值和频率的 控制。该控制方法省去了速度传感器,降低了发电系统的硬件成本, 提高了运行可靠性,并增
华中科技大学 2021-04-14
单壁碳纳米管和石墨烯的制备及其在能源、光电器件和复合材料等方面的应用
项目成果/简介:1991 年发现的碳纳米管(CNT)以及 2004 年发现的石墨烯(graphene),分别是一维和二维纳米材料的典型代表,被认为是 21世纪的战略性材料。 本项目发明了一类新的催化剂和大量制备 SWNTs 的方法,实现了高质量单壁碳纳米管的宏量制备(图 1),纯度达 70%以上,并达到了产业化规模(达 200 公斤/年以上)。采用机械共混及"原位"聚合 等方法,使SWNTs 有效地分散于高分子基质中,获得了以环氧树脂、ABS 及聚氨酯等为基质材料,电导率达 0.2 S/cm、导电临界含量仅为0.06%、电磁屏蔽效果高达 49dB 的复合材料。 本项目首先发展了一种可大量制备的可溶性功能化石墨烯(SPFGraphene)的方法,实现了石墨烯的百克级制备(图 2)。通过透射电子显微镜(图 3)及原子力显微镜(图 4)确定了石墨烯的二维平面结构。 获得了可溶性石墨烯材料及柔性透明导电薄膜(图 5);制备了基于石墨烯的高稳定性有机光伏电池及复合材料。 图 5、基于石墨烯的透明电极材料 所研制的单壁碳纳米管及石墨烯已用于数十家科研机构的研究和相关产品/样机的研制,包括应用于国家 863 重大汽车电池项目(中科院物理所)和军工卫星电池项目(中国电子科技集团公司第十八研究所)等。已研制出晶体管、锂离子电池、超级电容器(图 6)以及高性能复合材料等多种产品,具有广阔的应用前景。应用范围:南开大学在碳纳米材料的制备及应用研究方面取得了一批开创性成果,该项目技术的推广,将促进我国新材料、微电子、储能、资源保护等领域的技术进步和发展,为我国在这一新型纳米材料领域占据有利地位,提高国际竞争力,做出重要贡献。
南开大学 2021-04-11
单壁碳纳米管和石墨烯的制备及其在能源、光电器件和复合材料等方面的应用
1991 年发现的碳纳米管(CNT)以及 2004 年发现的石墨烯(graphene),分别是一维和二维纳米材料的典型代表,被认为是 21世纪的战略性材料。 本项目发明了一类新的催化剂和大量制备 SWNTs 的方法,实现了高质量单壁碳纳米管的宏量制备(图 1),纯度达 70%以上,并达到了产业化规模(达 200 公斤/年以上)。采用机械共混及"原位"聚合 等方法,使SWNTs 有效地分散于高分子基质中,获得了以环氧树脂、ABS 及聚氨酯等为基质材料,电导率达 0.2 S/cm、导电临界含量仅为0.06%、电磁屏蔽效果高达 49dB 的复合材料。 本项目首先发展了一种可大量制备的可溶性功能化石墨烯(SPFGraphene)的方法,实现了石墨烯的百克级制备(图 2)。通过透射电子显微镜(图 3)及原子力显微镜(图 4)确定了石墨烯的二维平面结构。 获得了可溶性石墨烯材料及柔性透明导电薄膜(图 5);制备了基于石墨烯的高稳定性有机光伏电池及复合材料。 图 5、基于石墨烯的透明电极材料 所研制的单壁碳纳米管及石墨烯已用于数十家科研机构的研究和相关产品/样机的研制,包括应用于国家 863 重大汽车电池项目(中科院物理所)和军工卫星电池项目(中国电子科技集团公司第十八研究所)等。已研制出晶体管、锂离子电池、超级电容器(图 6)以及高性能复合材料等多种产品,具有广阔的应用前景。
南开大学 2021-02-01
单壁碳纳米管和石墨烯的制备及其在能源、光电器件和复合材料等方面的应用
1991年发现的碳纳米管(CNT)以及2004年发现的石墨烯(graphene),分别是一维和二维纳米材料的典型代表,被认为是21世纪的战略性材料。 本项目发明了一类新的催化剂和大量制备SWNTs的方法,实现了高质量单壁碳纳米管的宏量制备(图1),纯度达70%以上,并达到了产业化规模(达200公斤/年以上)。 采用机械共混及"原位"聚合等方法,使SWNTs有效地分散于高分子基质中,获得了以环氧树脂、ABS及聚氨酯等为基质材料,电导率达0.2 S/cm、导
南开大学 2021-04-14
单壁碳纳米管和石墨烯的制备及其在能源、光电器件和 复合材料等方面的应用
1991 年发现的碳纳米管(CNT)以及 2004 年发现的石墨烯(graphene),分别是一维和二维纳米材料的典型代表,被认为是 21 世纪的战略性材料。 本项目发明了一类新的催化剂和大量制备 SWNTs 的方法,实现了高质量单壁碳纳米管的宏量制备(图 1),纯度达 70%以上,并达到了产业化规模(达 200 公斤/年以上)。采用机械共混及"原位"聚合等方法,使 SWNTs 有效地分散于高分子基质中,获得了以环氧树脂、ABS 及聚氨酯等为基质材料,电导率达 0.2 S/cm、导电临界含量仅为0.06%、电磁屏蔽效果高达 49dB 的复合材料。 本项目首先发展了一种可大量制备的可溶性功能化石墨烯(SPFGraphene)的方法,实现了石墨烯的百克级制备(图 2)。通过透射电子显微镜(图 3)及原子力显微镜(图 4)确定了石墨烯的二维平面结构。
南开大学 2021-04-13
首页 上一页 1 2
  • ...
  • 31 32 33 34 35 36 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1