高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种促进细胞生长的柞蚕丝素的生物矿化方法
本发明涉及一种促进细胞生长的柞蚕丝素的生物矿化方法。目前还没有一种操作容易,既快速,又能制备出具有高的生物相容性的柞蚕丝素的生物矿化方法。本发明依次包括如下步骤:将柞蚕蚕茧剪碎,投加到Na2CO3水溶液中脱胶得柞蚕丝素纤维;将柞蚕丝素纤维投加到LiSCN水溶液中溶解后透析,冷冻和干燥后制成柞蚕丝素粉末,再在六氟丙酮中溶解得柞蚕丝素溶液;将柞蚕丝素溶液滴加到塑料板上风干得到柞蚕丝素膜;将柞蚕丝素膜浸渍于CaCl2水溶液中,用水和丙酮清洗,风干,再浸渍于Na2HPO4水溶液中,用水和丙酮清洗,风干,重复操作20-35次,从而制得成品。本发明的工艺简单,制备周期短,制备而成的生物材料没有细胞毒性。
浙江大学 2021-04-11
钙钛矿太阳能电池中非辐射复合能量损失的研究
钙钛矿太阳能电池制备工艺简单,成本低廉。近年来,该类太阳能电池因其快速增长的光电转换效率和逐步提升的器件稳定性,吸引了学术界和产业界的广泛关注,为光伏领域带来了新的机遇。然而,由于钙钛矿太阳能电池中存在非辐射复合损失,所以目前的光电转换效率依然低于肖克利-奎塞尔(Shockley-Queisser)理论所定义的极限效率。因此,最大化降低钙钛矿太阳能电池的非辐射复合损失是进一步提升电池器件效率的未来研究重点。 鉴于此,研究团队基于已有的研究基础,对“最大化降低钙钛矿太阳能电池的非辐射复合损失”这一论题进行深入探讨和系统总结。该综述文章主要包括以下几个方面:首先,介绍了钙钛矿太阳能电池中非辐射复合的起源,并详细讨论了非辐射复合损失的定量化测试方法;其次,系统总结了在降低非辐射复合损失方面的最近研究进展;再次,依据肖克利-奎塞尔理论,对钙钛矿太阳能电池所能够获得的最高光电转换效率进行了科学预测;最后,在展望部分,前瞻性地指出了最大化降低非辐射复合损失的未来努力方向。图1. 金属卤化物钙钛矿活性层内的电荷载流子产生与复合动力学机制 在理想的金属卤化物钙钛矿半导体材料中,所有的光生电子和空穴最终将通过发射光子的方式进行复合(即:辐射复合)。然而,在实际的钙钛矿太阳能电池中存在大量的非辐射复合通道(如图1所示),绝大部分光生载流子将优先通过其他非辐射途径进行复合(例如,缺陷辅助复合,俄歇复合,界面诱导复合,电声耦合,带尾态复合等)。这些非辐射复合损失过程极大降低了电池在稳态下的光生载流子浓度,从而减小了金属卤化物钙钛矿层中准费米能级劈裂的能级差,最终造成钙钛矿太阳能电池较大的电压损失。因此,最大化降低或抑制这些非辐射复合通道是提升器件开路电压和光电转换效率的关键。 针对各种非辐射复合通道,该综述首先介绍了目前量化分析非辐射复合损失的常规测试技术以及测试要点,如图2所示。图2. 量化钙钛矿薄膜和完整器件中非辐射复合损失的表征技术 随后,结合当前研究现状,进一步梳理了近年来在降低非辐射复合损失方面取得的一系列重要进展。值得一提的是,该研究团队去年在《Science》杂志上报道的基于溶液二次生长方法构建渐变结的策略(如图3所示),在降低反式钙钛矿太阳能电池的非辐射复合损失方面效果显著(Science 360, 1442-1446)。此后,一系列研究报道显示,相似的策略在正式常规结构钙钛矿太阳能电池和全无机钙钛矿太阳能电池中也可以获得正向的实验结果。由此说明,在金属卤化物钙钛矿半导体材料中构建有效的渐变结对后续降低非辐射复合损失具有非常重要的借鉴价值。图3. 渐变结钙钛矿太阳能电池器件结构和渐变结的时间分辨光谱 此外,该综述还以当前最高效率的砷化镓太阳能电池为参照,先假定钙钛矿太阳能电池的非辐射复合损失与砷化镓太阳能电池的情形一致,再依据肖克利-奎塞尔理论,对钙钛矿太阳能电池所能够获得的性能参数进行科学预测,进而给出电池器件所能达到的最高光电转换效率,如图4所示。图4. 当钙钛矿太阳能电池的非辐射复合损失与当前最高效率砷化镓太阳能电池的情况相同时,单结钙钛矿太阳能电池可实现的最优器件性能参数 最后,该综述也指出,目前提升器件性能的两条主要途径是最优化光子俘获和最大化降低非辐射复合损失。如果能将二者进行有效整合,探索更可靠的协同优化策略,这可能会是将器件光电转换效率提升至接近理论极限的可行方案。为此,综述也对一些未来的努力方向进行了展望。 总的来说,该综述为最大程度地降低钙钛矿太阳能电池的非辐射复合损失提供了理论总结,也为开展实验工作提供了参考借鉴,对进一步提升电池效率,推动该类电池产业化应用有重要意义。
北京大学 2021-04-11
一种促进细胞生长的柞蚕丝素的生物矿化方法
本发明涉及一种促进细胞生长的柞蚕丝素的生物矿化方法。目前还没有一种操作容易,既快速,又能制备出具有高的生物相容性的柞蚕丝素的生物矿化方法。本发明依次包括如下步骤:将柞蚕蚕茧剪碎,投加到Na2CO3水溶液中脱胶得柞蚕丝素纤维;将柞蚕丝素纤维投加到LiSCN水溶液中溶解后透析,冷冻和干燥后制成柞蚕丝素粉末,再在六氟丙酮中溶解得柞蚕丝素溶液;将柞蚕丝素溶液滴加到塑料板上风干得到柞蚕丝素膜;将柞蚕丝素膜浸渍于CaCl2水溶液中,用水和丙酮清洗,风干,再浸渍于Na2HPO4水溶液中,用水和丙酮清洗,风干,重复操作20-35次,从而制得成品。本发明的工艺简单,制备周期短,制备而成的生物材料没有细胞毒性。
浙江大学 2021-04-13
一种半透明钙钛矿太阳能电池及其制备方法
本发明公开了一种半透明钙钛矿太阳能电池及其制备方法,钙 钛矿太阳能电池包括透明导电基板 a、无机电子传输层、光捕获层、无 机空穴传输层和透明导电基板 b,其中光捕获层由 DXZ3 型钙钛矿材 料 形 成 , D 选 自 Cs<sup>+</sup> 、 CH3NH3<sup>+</sup> 、 CH(NH2)2<sup>+</sup> 或 其 混 合 物 , X 选 自 P
华中科技大学 2021-04-14
中南民族大学广播系统采购项目(第二次)竞争性磋商公告
中南民族大学广播系统采购项目(第二次)竞争性磋商
中南民族大学 2022-05-31
一种烧结过程SO2、二噁英协同减排方法及系统
简介:本发明公开了一种烧结过程SO2、二噁英协同减排方法及系统,属于烧结过程中污染物减排技术领域。本发明的协同减排系统包括铺底料布料装置、第一混合料布料装置、减排混合料布料装置、第二混合料布料装置,烧结台车中后部的风箱经布袋除尘器与主烟道相连;该协同减排方法的步骤为:步骤一:烧结布料:(A)铺装铺底料层;(B)铺装第一混合料层;(C)铺装协同减排料层;(D)铺装第二混合料层;步骤二:烟气集中收集处理:烧结过程中将烧结台车中后部风箱内的烟气经布袋除尘器除尘后由管道引入烧结机主烟道。本发明通过设置协同减排料层,实现了烧结过程SO2、二噁英的协同减排,大大减轻了钢铁企业的减排负担。
安徽工业大学 2021-04-11
透平压缩机的跨临界二氧化碳热泵循环系统
当前环境问题已成为一个重要的全球问题,其中臭氧层破坏和温室效应问题 引起人们高度重视。传统的热泵热水器以氟利昂作为工质,不符合环保要求,而 人工合成的制冷剂又可能对环境造成潜在的、不可预知的危害。因此,开发环保 意义上的热泵热水器具有重要价值。 热泵热水器是以消耗少部分电能为代价,通过热力循环,将环境介质水、地 热源、空气等储存的能量加以发掘利用,用来生产热水。CO2 作为自然工质,以 其环保性、经济性、安全性、优良的传热特性、大单位容积制冷量等综合优势, 成为热泵工质的首选。由于其较低的临界温度,循环一般处于跨临界状态下运行。 所谓跨临界循环就是压缩机的吸气压力低于临界压力,但是排气压力高于临界压 力,工质在高压侧换热主要通过显热交换完成,其蒸发温度低于临界温度,循环 吸热过程仍在亚临界条件下,换热依靠潜热,高压侧温度和压力相互独立,使得 系统多了一个自由度或者可控参数。相较于常规亚临界循环,CO2 跨临界循环中 气体冷却器所具有的较高排气温度和较大温度滑移正好和冷却介质的温升过程 相匹配,温差不可逆损失减小,有利于提高系统性能,非常适用于家用水的加热。 而且 CO2 跨临界循环的容
西安交通大学 2021-04-10
基于非接触式扫描二维码的电动汽车充电系统和方法
本发明公开了一种基于非接触式扫描二维码的电动汽车充电系统和方法,包括充电桩、设于各充电 桩的第一信息采集装置、第二信息采集装置、信息处理模块、通信模块和显示模块;第一信息采集装置、 第二信息采集装置、通信模块、显示模块均与信息处理模块信号连接;信号处理模块通过通信模块与云 服务器信号连接。本发明实现了非接触式的充电桩控制,简化了电动汽车的充电操作,方便了运营商对 充电桩的管理,并可实现无人值守情况下充电费率的自动调节,从而促进城市智能充电网络的
武汉大学 2021-04-14
氨法-塔式常压捕集吸收二氧化碳系统及工艺
一种氨法-塔式常压捕集吸收二氧化碳系统及工艺,包括稀氨水供给装置等,二氧化碳吸收塔包括罐体等,罐体顶部设有排气管,稀氨水供给装置通过管路与第一喷淋装置连接,引风机通过管路与第一换热器连接,第一换热器通过管路伸入罐体下部,罐体底部、第二泵、第二换热器、结晶槽、离心机、母液槽之间依次通过管路连接,母液槽、第三泵、第二喷淋装置之间依次通过管路连接,第二、三泵的进口之间连接第一管路,高浓度氨水储槽通过管路与第一泵连接,第一泵通过管路与第二喷淋装置连接,冷却装置的冷却水进水管与第一换热器的冷却水进水管连接在一起,冷却水进水管上设有调节阀。本发明减碳效率高,工艺流程简单、系统结构简化、投资及运行成本低廉。
安徽理工大学 2021-04-13
生物法固定二氧化碳厌氧发酵制备丁二酸
丁二酸又名琥珀酸,是生物炼制产品工程中最重要的碳四平台化合物,是制备多种重要化工中间体(1,4-丁二醇、四氢呋喃、g-丁内酯等)与生物可降解材料(PBS)的原料,市场需求总量将有望由目前的1.8万吨扩展至400万吨。传统生产方法采用的是从丁烷经顺丁烯二酸酐通过电解生产,生产污染大,成本高,抑制了丁二酸这一大宗化学品的发展潜力。生物法生产丁二酸的主要原料来源广泛且价格低廉(玉米、废乳清、工农业生产废料等),可以减少对不可再生资源的消耗,微生物合成丁二酸的过程中吸收并固定CO2用于菌株的代谢,并最终生成丁二酸,每生产1kg丁二酸,将会有0.37kg的CO2被固定。如果将发酵生产丁二酸与另一大宗发酵产品乙醇的生产过程进行耦合,更可将发酵生产乙醇产生的CO2加以利用,减少温室气体的排放,并同时生产出丁二酸、乙醇等产品。该制备技术具有产物浓度高、原料来源丰富、分离简便、产品质量高等优势。可利用葡萄糖、玉米粉糖化液、纤维素/半纤维素水解糖液并在发酵中固定二氧化碳气体作为碳源,在较高葡萄糖浓度下(100g/L)实现了较高浓度产物的累积(60~70g/L),生产强度达1.5g/(L•h),丁二酸提取收率≥80%,产品纯度≥98%。拥有具有自主知识产权的丁二酸生产菌株:产琥珀酸放线杆菌NJ113,该菌株具有良好的丁二酸生产性状,生产水平目前处于国际先进、国内领先。建立了从种子培养、厌氧发酵、产物分离提取及检测分析等一系列较为完整的上下游工艺,具有路线简单、便于操作、绿色清洁等优点。
南京工业大学 2021-04-13
首页 上一页 1 2
  • ...
  • 41 42 43
  • ...
  • 633 634 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1