高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
复杂装备智能制造中的关键共性技术研究与应用推广
本项目核心技术获中国轻工业联合会科学技术进步奖二等奖。 1、项目简介 本项目所指复杂装备主要为复杂动力机械装备及其关键零部件,如汽轮机、压缩机等。 本项目针对复杂装备制造企业技术准备时间长、效率低、制造过程模式自动化程度低、协调能力差、信息共享度和集成度不高、信息孤岛现象等实际情况,研发了集数字化设计、制造和智能化监控管理为一体的设计制造管理系统。项目重点突破了复杂装备智能化制造过程和工艺参数优化、工艺工装设计自动化、数控机床生产的数字监控管理智能化、基于短距离无线通讯(Zigbee)技术的生产信息双向传输、自适应在线排产优化等关键技术,为研发设计制造集成管理系统提供了技术支撑。 2、创新要点 (1)将开放式装配建模技术应用于产品的研发中,创立了模型的 UML 表达方式、装配体特征、装配配合公差分析和系统的装配层次分析等,完成了产品的结构设计、零件与装配的联动设计、装配仿真分析,并建立了产品及其关键部件的数字样机。开放式装配建模方法更有效地指导产品由整体构思到样机设计的整个过程。 (2)提出了面向数字化预装配的分层干涉检测算法,该方法把干涉检测过程分为粗检测、半精检测、精确检测三层,通过逐层检测,大大加快了干涉检测的速度,提高了检测的精确度,有助于预装配中优化装配序列的快速生成。 (3)基于虚拟产品开发管理技术 VPDM,研究并解决了机械装备虚拟数字样机开发中的数据交叉、耦合和冗余问题; (4)基于工程知识和多视觉特征模型,提出了一种装配优化序列规划方法。利用直接装配关系图表达产品几何信息、设计信息、制造信息和装配信息等,通过产品特性和操作环境的评价因素,构建装配先后关系,从可行装配序列中选择最优装配序列,更好地帮助设计师完成装配设计并做出正确决定。缩短了产品研发时间,保证产品准时投放市场。 3、效益分析 目成果广泛应用于多家装备制造企业,其中 4 家企业利用该技术提高生产效率 20%~30%,按时交货率从 63%左右提高到 90%以上。近三年企业总计新增利润 6.1663 亿元,新增税收 3.3804 亿元,新增销售 28.058 亿元。减少了 80%以上的生产管理人员 4、推广情况(已推广企业) 本项目成果已在无锡透平叶片有限公司、无锡压缩机股份有限公司、江苏南方机电股份有限公司、无锡市安迈工程机械有限公司等生产企业得到成功应用。 授权专利: 1.数控机床刀具的在线管理方法 201010129780.1 2.车间加工设备群加工运行优化的方法 200910031198.9 3.数控机床监控方法 201110430626.2
江南大学 2021-04-11
复杂装备智能制造中的关键共性技术研究与应用推广
本项目核心技术获中国轻工业联合会科学技术进步奖二等奖。 1、项目简介 本项目所指复杂装备主要为复杂动力机械装备及其关键零部件,如汽轮机、压缩机等。 本项目针对复杂装备制造企业技术准备时间长、效率低、制造过程模式自动化程度低、协调能力差、信息共享度和集成度不高、信息孤岛现象等实际情况,研发了集数字化设计、制造和智能化监控管理为一体的设计制造管理系统。项目重点突破了复杂装备智能化制造过程和工艺参数优化、工艺工装设计自动化、数控机床生产的数字监控管理智能化、基于短距离无线通讯(Zigbee)技术的生产信息双向传输、自适应在线排产优化等关键技术,为研发设计制造集成管理系统提供了技术支撑。 2、创新要点 (1)将开放式装配建模技术应用于产品的研发中,创立了模型的 UML 表达方式、装配体特征、装配配合公差分析和系统的装配层次分析等,完成了产品的结构设计、零件与装配的联动设计、装配仿真分析,并建立了产品及其关键部件的数字样机。开放式装配建模方法更有效地指导产品由整体构思到样机设计的整个过程。 (2)提出了面向数字化预装配的分层干涉检测算法,该方法把干涉检测过程分为粗检测、半精检测、精确检测三层,通过逐层检测,大大加快了干涉检测的速度,提高了检测的精确度,有助于预装配中优化装配序列的快速生成。 (3)基于虚拟产品开发管理技术 VPDM,研究并解决了机械装备虚拟数字样机开发中的数据交叉、耦合和冗余问题; (4)基于工程知识和多视觉特征模型,提出了一种装配优化序列规划方法。利用直接装配关系图表达产品几何信息、设计信息、制造信息和装配信息等,通过产品特性和操作环境的评价因素,构建装配先后关系,从可行装配序列中选择最优装配序列,更好地帮助设计师完成装配设计并做出正确决定。缩短了产品研发时间,保证产品准时投放市场。 3、效益分析 目成果广泛应用于多家装备制造企业,其中 4 家企业利用该技术提高生产效率 20%~30%,按时交货率从 63%左右提高到 90%以上。近三年企业总计新增利润 6.1663 亿元,新增税收 3.3804 亿元,新增销售 28.058 亿元。减少了 80%以上的生产管理人员 4、推广情况(已推广企业) 本项目成果已在无锡透平叶片有限公司、无锡压缩机股份有限公司、江苏南方机电股份有限公司、无锡市安迈工程机械有限公司等生产企业得到成功应用。 授权专利: 1.数控机床刀具的在线管理方法 201010129780.1 2.车间加工设备群加工运行优化的方法 200910031198.9 3.数控机床监控方法 201110430626.2 
江南大学 2021-04-13
复杂壳体、法兰等管件高性能柔性整体成形制造技术
系统研究了换热器衬环、高压组合电器壳体等管件高性能柔性制造工艺原理及工装夹具装置;发展了装夹板式换热器压板后成形无缝金属衬环的工艺方法,以及同时成形装夹板式换热器压板后同时塑性成形两端法兰的柔性整体成形制造方法;构建了高压组合电器壳体支管及法兰一体化塑性成形工艺方法,以及工艺路径及工具头结构的优化确定方法。 
西安交通大学 2021-04-11
GCY86-5智能制造(铣削)综合实训平台(西门子)
智能制造(铣削)综合实训平台既可独立实训,也可以接通实物机电设备实现动作控制。本设备集成了智能制造执行系统(MES)、工业机器人控制系统、数控铣削控制系统、可编程控制器(PLC)、触摸屏(HMI)、场景系统、MES系统。通过机器人示教器、数控系统、PLC及电路控制虚拟场景中的设备。利用该设备可综合实训MES系统、工业机器人编程与操作、数控铣床编程与操作、触摸屏编程与控制、工业PLC的交互控制编程与调试。本设备还配备自定义I/O接线仿真功能模块,用户可自定义删除和连接I/O端口的接线设置,从而可以按自定义的I/O接线进行PLC程序编辑,拥有自主搭建场景功能。 该平台面向智能制造专业群可开展《工业机器人技术与应用》、《数控铣削加工实训》、《数控铣床系统参数调试》、《PLC基础应用》、《触摸屏组态控制》、《智能制造单元综合实训》等课程的教学、考核及相应的技能竞赛训练。
广州超远机电科技有限公司 2021-12-08
邱让建副教授在《Agricultural Forest Meteorology》上发表不同类型增温对水稻蒸散发影响最近进展
近日,重点实验室邱让建副教授在《Agricultural and Forest Meteorology》(农林科学I区top期刊,2020年影响因子4.651)上发表题为“Differential response of rice evapotranspiration to varying patterns of warming”的研究论文,该论文第一作者是我校邱让建副教授,杜克大学Katul教授和硕士研究生李隆安等为共同作者。     水稻是全球重要的粮食作物,同时也是高耗水作物。水稻水分消耗与生长、生物量和产量等息息相关。水稻生产面临着全球变暖、水资源短缺、生物和非生物胁迫等诸多挑战,其中气候变暖对水稻生产的影响最大。然而观测气候变暖条件下的水稻蒸散量比较困难,因此运用作物模型估算气候变暖情况下水稻的蒸散发成为研究热点。很多研究表明,全球变暖呈不对称增温形式,然而日尺度上的作物模型只能评估全天变暖对作物蒸散发的影响。 利用中国、日本和菲律宾1003个气象站50年的气温数据,文章揭示了东亚不对称增温的事实;创新提出了基于冠层覆盖度的冠层和土壤接收的辐射的分配方案,基于Wang–Engel温度响应函数发展了日有效热时间的表征方法,构建了冠层覆盖度随累积热时间的动态变化函数,基于改进的动态Priestley-Taylor模型,实现了不同类型(白天、夜间、全天,不对称)增温对蒸散发影响的评估,突破了传统作物模型只能评估全天增温对蒸散发影响的瓶颈,为评估未来气候变暖对蒸散发的影响提供了新方法。论文同时揭示了气候变暖导致的物候期变化对水稻蒸散发的重要影响。
南京信息工程大学 2021-04-26
基于激光散射的空气污染物微粒测量仪
近些年,工业发展导致环境污染越来越严重,其中粉尘作为环境 恶化的重要污染源,严重危害着我们的生活环境和人们的身心健康。 因此,采取及时有效的措施对环境中的粉尘浓度进行检测,然后进行 除尘降尘,可有效提高人生安全系数和环境质量。 目前,现有的粉尘检测设备中,所用的传感器稳定性差,致使测量 精度不够高,且校准调节难度大,这也对产品的推广和后期维护带来 不便。课题组采用激光散射法在线监测粉尘浓度,并采用 3D 打印技术 设计系统总体及光路结构,采用串口通讯模块对系统进行了数据校准 及稳定性分析,测量精准度高。
南开大学 2021-04-11
基于激光测振技术的建筑幕墙安全状态远程检测方法
建筑幕墙是由支承结构体系与面板组成的、可相对主体结构有一定位移能力、不分担主体结构所受作用的建筑外围结构或装饰性结构,包括玻璃幕墙、石材幕墙和合金幕墙等,并被广泛应用于高楼大厦、机场、高铁车站等公共设施。随着服役年限的增加,近些年来建筑幕墙因面板脱落造成的事故屡见不鲜,严重威胁着人们的生命财产安全。因此,建筑幕墙实施有效的检测是实现幕墙安全管理、预防灾害发生的重要前提。当前幕墙安全状态检测的手段主要有:目测法、手试法、振动传感器法等,目测法和手试法需要作业人员通过攀爬等手段靠近检测对象实施检测,且检测结果受检测人员个人经验影响较大。振动传感器法因传感器的安装困难、需要额外激振、附加质量也对检测结果影响较大等原因实际应用价值较小。 本项成果提供了一种基于激光测振技术的建筑幕墙安全状态的无损检测方法。该方法基于幕墙面板时常微动的特点进行幕墙安全状态检测,不需要提供额外激励,可远程、快速评价幕墙的安全状态,具有适用范围广、实用性强等特点。
北京科技大学 2021-02-01
航空航天轻合金大型复杂结构精准激光焊接技术
以大型薄壁结构双激光束双侧同步焊接(DLBSW)工艺与装备需求为牵引,开展高效激光焊接机理、技术、装备研究,突破了激光焊接微观热-力-冶金机理、形性一体化精准调控技术,形成了首套双激光束双侧同步焊接装备,完成了国内首个激光焊接火箭贮箱的研制。 技术特征 面向航空航天大型复杂曲面薄壁结构,提出了焊缝组织形态三维解构方法、面向微区缺陷与性能的组织形态重构与参数体系化设计方法;提出了智能化建模技术,形成了面向航空航天型号产品的虚拟焊接体系。
南京航空航天大学 2021-05-11
航空航天轻合金大型复杂结构精准激光焊接技术
以大型薄壁结构双激光束双侧同步焊接(DLBSW)工艺与装备需求为牵引,开展高效激光焊接机理、技术、装备研究,突破了激光焊接微观热-力-冶金机理、形性一体化精准调控技术,形成了首套双激光束双侧同步焊接装备,完成了国内首个激光焊接火箭贮箱的研制。技术特征面向航空航天大型复杂曲面薄壁结构,提出了焊缝组织形态三维解构方法、面向微区缺陷与性能的组织形态重构与参数体系化设计方法;提出了智能化建模技术,形成了面向航空航天型号产品的虚拟焊接体系。应用范围:已有合作与成效:(1)与中国商飞合作,完成C919机身壁板结构DLBSW仿真研究与样件研制工作;(2)与上海航天技术研究院合作,将DLBSW技术应用于火箭燃料贮箱结构,成果完成了国内首个激光焊接火箭贮箱的研制工作;(3)与航天一院合作,开展新一代载人火箭贮箱箱底焊接变形控制研究。后续推广:为将来重型运载火箭、大型宽体客机、战略运输/轰炸机、下一代战斗机制造提供支持。
南京航空航天大学 2021-04-10
飞秒激光脉冲制备硅基微纳结构光伏材料
太阳能作为一种洁净和相对易于获取的能源在未来的动力产品中将占有越来越大的比份。如何发展高光电能量转换效率、高可靠性和低成本的太阳能电池是目前太阳能利用领域所面临的关键问题。相对于第一代和第二代太阳能电池(转换效率<<50%),各国科学家纷纷研究不同的应用于第三代太阳能电池的新材料和新结构,目标是使光电转换效率大于5 0%。近年来,一种具有微、纳米量级特殊结构的光伏材料成为太阳能电池的研究热点。利用飞秒脉冲激光在极短的持续时间内激发出极大的峰值能量,其在硅片的相互作用过程中具有很强的非线性效应,聚焦烧蚀硅表面很小的一块面积,形成规则排列的微纳米结构。这种微纳米结构由于表面积增大,对入射光波有很大的吸收,且对光的敏感性提高了数百倍,这些性质对我们提高光电转换效率具有很大的指导意义。这种材料与本底未处理材料的性质相比,材料带隙减小,对光的敏感性提高了数百倍,这使得其对波长为250—2500 nm的入射光波有大于90%的吸收;另外,黑硅比传统材质的硅的比重低。这些奇特的光电和物理性质能进一步提高太阳能电池的光电转换效率。根据光吸收效率,激子光量子效率,化学电势效率以及填充因子计算总的光电转换效率,普通硅基太阳能电池光电转换效率只有1 5%,而基于微纳结构光伏材料的太阳能电池转换效率可望达到50%-60%。 针对国民经济可持续发展在太阳能光伏技术方面的重大需求,发展利用超短脉冲激光制备具有优异光电转化效率的微纳结构光伏材料的新方法,以及通过探测光伏材料中非平衡载流子的能带结构及微分负电导等特性,探知光伏材料的光电转换效率,从而筛选出转换效率较高的微纳结构光伏材料,最终在发展新型、高效太阳能电池的新原理和新技术方面取得创新性突破,为我国研发具有自主知识产权的高效第三代光伏电池打下坚实基础。
上海理工大学 2021-04-11
首页 上一页 1 2
  • ...
  • 104 105 106
  • ...
  • 224 225 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1